INL/EXT-15-36567

U.S. Department of Energy Vehicle Technologies Program

United States Advanced Battery Consortium Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

Revision 0

March 2017

The Idaho National Laboratory is a U.S. Department of Energy National Laboratory

Operated by Battelle Energy Alliance

Disclaimer

This manual was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

United States Advanced Battery Consortium Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

Revision 0

March 2017

Prepared for the U.S. Department of Energy
Assistant Secretary for Energy Efficiency and Renewable Energy (EERE)
Idaho Operations Office
Contract DE-AC07-05ID14517

FOREWORD

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for 48V Mild Hybrid Electric Vehicles (48V HEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for 48V HEV applications.

Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Brian Cunningham (DOE), Oliver Gross (Fiat Chrysler Automobiles), Scott Jorgensen (General Motors), and Matt Denlinger (Ford Motor Company). Lee Walker from Idaho National Laboratory was the primary author for the manual.

The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by Brian Cunningham, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader.

CONTENTS

FO	REWOF	RD		i
AC	RONYN	ЛS		vii
GL.	OSSAR	Y		viii
1.			APPLICABILITY	
	1.1	USABC	Energy Storage Targets For 48 Volt Mild Hybrid Electric Vehicles	2
2.	TEST	PROFILE	S DERIVED FROM USABC TARGETS	3
3.	TEST	PROCED	URES	3
	3.1	General 7 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	Voltage Limits Temperature Control Pressure Controls (Pouch Cells) Scaling of Performance for Constant Power Test Profiles Scaling of HPPC-Current Charging Procedure	3 4 4 4
	3.2	Capacity	Test	5
	3.3	Constant	Power Discharge and Charge Tests	5
	3.4	Hybrid P 3.4.1 3.4.2 3.4.3	ulse Power Characterization Test	6 7
	3.5	Self-Disc 3.5.1 3.5.2	Sharge Test	11
	3.6	Cold Cra 3.6.1	nking Test	
	3.7	Thermal 3.7.1	Performance TestSurvival Temperature Test	
	3.8	Energy E 3.8.1	fficiency Test	
	3.9	Operating 3.9.1 3.9.2	Set Point Stability Test	18
	3.10	Cycle Lift 3.10.1	fe TestCycle Life Test Procedure Outline	
		3.10.2	48 Volt Mild Hybrid Electric Vehicle Cycle Life Test Profile	19
	3.11	Calendar 3.11.1	Life Test Calendar Life Test Planning	19

		3.11.2 Calendar Life Test Procedure	
		3.11.4 Alternative Calendar Life Test	
	3.12	Reference Performance Tests	
4.	ANA	LYSIS AND REPORTING OF TEST RESULTS	25
	4.1	General	
	4.2	Capacity Test	25
		4.2.1 Capacity Fade	
		4.2.2 Energy Fade	25
	4.3	Constant Power Discharge and Charge Tests	26
	4.4	Hybrid Pulse Power Characterization Test	26
		4.4.1 Overall Analysis Approach	
		4.4.2 Pulse Resistance	
		4.4.3 Pulse Power Capability4.4.4 Useable and Available Energies	
		4.4.5 Available Energy Margins	
		4.4.6 Available Power	
		4.4.7 Power and Energy Fade	
		4.4.8 Minimum and Maximum Capacities Removed and Cold Crank Condition	
		4.4.9 Other Laboratory Cell Performance Characteristics	
		4.4.10 Determining Battery Size Factor When Not Supplied By Manufacturer	
	4.5	Self-Discharge Test	40
	4.6	Cold Cranking Test	41
	4.7	Thermal Performance Tests	42
		4.7.1 Survival Temperature Test	42
	4.8	Energy Efficiency Test	42
	4.9	Operating Set Point Stability Test	43
	4.10	Cycle Life Tests	43
	4.11	Calendar Life Test	43
	4.12	Reference Performance Tests	44
	4.13	Module Controls Verification Tests	44
	4.14	System-Level Testing	44
5.	REFE	ERENCES	45
Арр	endix A	A - Sample Test Plan	4 <i>6</i>
• •		B - Gap Analysis Reporting	
Ann	endix (C – Voltage definitions	54

FIGURES

Figure 1. Hybrid Pulse Power Characterization Test profile.	7
Figure 2. Hybrid Pulse Power Characterization Test (start of test sequence).	9
Figure 3. Hybrid Pulse Power Characterization Test (complete HPPC sequence)	9
Figure 4. Cold Cranking Test profiles	13
Figure 5. 48 Volt Mild Hybrid Electric Vehicle Cycle Life Test Profile	17
Figure 6. Calendar Life Test profile.	23
Figure 7. Resistance calculation time points	27
Figure 8. Open-circuit voltage and pulse resistances versus capacity removed	28
Figure 9. Pulse power capability vs depth of discharge.	29
Figure 10. Relationship Between Energy and %-Capacity Removed in a 5 kW Discharge	30
Figure 11. Unscaled HPPC Cell Power Capability vs. Energy Removed	31
Figure 12. HPPC Power vs. HPPC-Current Discharge Energy Scaled by the Battery Size Factor	32
Figure 13. Available Energy Determination.	33
Figure 14. Available Energy and Power Margins Over Life.	34
Figure 15. Useable Energy versus Power Curve.	35
Figure 16. Minimum and Maximum Capacities Removed and Cold Crank Condition	37
Figure 17. Finding the Useable Energy Using Device-Level Results	39
Figure 18. Finding a Battery Size Factor Using Device-Level Results.	40
Figure 19. Cold Cranking Test resistance calculation points.	41
Figure B.1. Gap Analysis – Energy	51
Figure B.2. Useable Energy versus Power Curve	52
Figure C.1. Voltage Definitions and Key Concepts	54

TABLES

Table 1. USABC Energy Storage System Performance Targets For 48V Mild Hybrid Electric	Vehicles. 2
Table 2. Hybrid Pulse Power Characterization Test profile.	7
Table 3. Cold Cranking Test profiles.	12
Table 4. 48 Volt Mild Hybrid Electric VehicleCycle Life Test Profile.	15
Table 5. Calendar Life Test profile.	22
Table 6. Standard Reference Performance Tests and Test Intervals for Life testing.	24
Table B.1. Gap Analysis	53

ACRONYMS

AE Available Energy

 $AE_{Margin} \qquad \qquad Available \ Energy \ Margin \ at \ 11 \ kW \ (E_{Discharge} - AE_{Total \ Target})$

AE_{Total Target} Total Available Energy Target (313 Wh)

BOL Beginning Of Life

BSF Battery Size Factor

E_{discharge} Discharge energy at any given power level

EOL End Of Life

FreedomCAR Freedom Cooperative Automotive Research

HPPC Hybrid Pulse Power Characterization

I_{HPPC} Hybrid Pulse Power Characterization Current

INL Idaho National Laboratory

OCV Open-Circuit Voltage

OSPS Operating Set Point Stability

P_{CPD} Constant Power Discharge Power

PNGV Partnership for a New Generation of Vehicles

SOC State Of Charge

S/S Start/Stop

RPT Reference Performance Test

UE Useable Energy

USABC United States Advanced Battery Consortium

GLOSSARY

- Available Energy (AE) [Wh] the single energy point on the Useable Energy versus Power curve that precisely corresponds to the Discharge Pulse power target.
- Available Energy Margin (AE_{Margin}) [Wh] for a given HPPC test, the difference between the calculated available energy (AE) and the corresponding energy target ($AE_{Total\ Target}$).
- Available Energy for Total Target ($AE_{Total\ Target}$) [Wh] the total discharge available energy at end-of-life; this corresponds to the target available energy of 313 Wh based on the targets in Table 1.
- Available Power [kW] the discharge pulse power at which the useable energy is equal to the Available Energy target ($AE_{Total\ Target}$).
- Battery Size Factor (BSF) —an integer which is the minimum number of cells or modules expected to be required to meet all the performance and life targets in a parallel and/or series combination. Note that there may be some cases where the BSF is not required to be an integer (e.g., when prototype cell designs have different electrode surface areas than the final design) with approval from the technical program manager.
- Beginning of Life (BOL) the point at which characterization of the test article begins. The BOL HPPC is usually conducted to determine and/or confirm the BSF prior to life testing. This is distinguished from the HPPC immediately prior to the start of life testing, which is typically denoted RPT0 (see below).
- $C_1/1$ Rate [A]—a current corresponding to the manufacturer's rated capacity (in ampere-hours) for a one-hour discharge at BOL between Vmax₁₀₀ and Vmin₀. For example, if the battery's rated one-hour capacity is 10Ah, then C₁/1 is 10A.
- Charge any condition in which energy is supplied to the device rather than removed from the device. Charge includes both recharge and regen conditions. Charge is indicated in this manual as a negative value (from the perspective of the battery).
- Constant Power Discharge Power $(P_{CPD})[W]$ the discharge rate set at 5 kW based on the approximate power needed for the vehicle.
- Default rest [h] a fixed rest period determined at BOL, it is at least one hour or the time needed to achieve thermal and voltage equilibrium (e.g., rate of change less than 1°C/hour or less than 5 mV/h).
- Depth-of-Discharge (DOD) [%]— the percentage of a device's rated capacity (Ah) removed by discharge relative to a fully charged condition from Vmax₁₀₀, normally referenced to a constant current discharge at the HPPC-Current rate (I_{HPPC}) or a C₁/1 rate.
- Device a cell, module, sub-battery or battery pack, depending on the context. The generic term "device" is normally used in test procedures except where a specific type of device is meant. (Most test procedures are intended to apply to any of these types.)
- Discharge any condition in which energy is removed from the device rather than supplied to the device. Discharge is indicated in this manual as a positive value (from the perspective of the battery).
- $E_{Discharge}[Wh]$ at any given power level, $E_{Discharge}$ is the corresponding energy on the pulse power discharge curve. The value of $E_{Discharge}$ at the power target is the total Available Energy from which the AE_{Margin} is determined.
- End-of-Life (EOL) a condition reached when the device under test is no longer capable of meeting the targets. This is normally determined from HPPC Test results scaled using the Battery Size Factor and may not coincide exactly with the inability to perform the life test profile (especially if cycling is done at elevated temperatures).

- End-of-Test a condition where life testing is halted, either because criteria specified in the test plan are reached, or because it is not possible to continue testing.
- Fully Charged the condition reached by a device when it is subjected to the manufacturer's recommended recharge algorithm. In most cases, a device is considered "fully charged" at Vmax₁₀₀, but in other cases (e.g., the static capacity test), the device could be recharged to Vmax₁₀₀.
- *HPPC-Current rate* (I_{HPPC}) [A] the constant current that is roughly equivalent to a BSF-scaled 5 kW constant power discharge rate (see Section 3.1.5). For the 48V HEV application this value is not used in the HPPC test, and is only used as an approximation for a BSF-scaled 5 kW constant power discharge.
- Hybrid Pulse Power Characterization (HPPC) Test a Reference Performance Test procedure that is used to determine the pulse power and energy capability as a function of aging for direct comparison with the targets in a Gap Analysis.
- Maximum Rated Current (Imax)[A] the maximum discharge current that a manufacturer will permit to be sustained by a device for 1.0 seconds or less. (This value need not be achievable over the full operating range).
- Operating Capacity [Ah] the useable capacity at a C₁/1 rate over the full operating range of the device between Vmax_{op} and Vmin₀. The operating capacity should be provided by the manufacturer, or it is established at BOL and remains fixed during life aging.
- Power Fade [W] the change in Available Power from RPT0 to the value determined at some later time, expressed as a percentage. (Similar definitions apply to Capacity Fade and Available Energy Fade, although these are not included in this glossary).
- *Power Margin (W)* for a given HPPC test, the difference between the calculated available power and the corresponding power target.
- Profile a connected sequence of pulses used as the basic 'building block' of many test procedures. A test profile normally includes discharge, rest and charge steps in a specific order, and each step is normally defined as having a fixed time duration and a particular (fixed) value of current or power.
- Rated Capacity [Ah] the useable capacity at a C₁/1 rate over the full electrochemical range of the device between Vmax₁₀₀ and Vmin₀. The rated capacity should be provided by the manufacturer, or it is established at BOL and remains fixed during life aging.
- *Recharge* a charge interval corresponding to the sustained replenishment of energy by a continuous power source (such as an engine-generator or off-board charger).
- Reference Performance Test (RPT) periodic interruptions during calendar and cycle life aging to gauge degradation in the test article (see Section 3.12). Degradation rates are established by comparing results from the RPTs during life testing with respect to the initial RPT performed immediately prior to the start of life testing (usually referred to as RPT0).
- Regen a charge interval corresponding to the return of vehicle kinetic energy (typically from braking) or a generator from the powertrain to a device. Because of physical limitations, high rates of regen can only persist for a few seconds at a time. Regen in this manual is indicated as a negative value (from the perspective of the battery).
- *Rest* the condition in which energy is neither supplied to the device nor removed from the device. Rest is indicated by zero current.
- State- of-Charge (SOC) [%] an estimate of the device charge capability expressed as a percentage of the BOL rated capacity and typically reached by obtaining specified voltages.

- Useable Energy [Wh] a set of available discharge energies at the scaled 5 kW rate between $V_{max_{op}}$ and $E_{Discharge}$ at given power values.
- *Voltage limits* [V] numerous voltage limits are defined in the manual as follows:
 - *Vmax*_{pulse} [V] the regen voltage limit; maximum voltage allowed during regen pulses of 10s or less.
 - *Vmax*₁₀₀[*V*] manufacturer's specified voltage corresponding to 100% SOC and the basis for the rated capacity.
 - *Vmax*_{op} [V] corresponds to the upper end of the intended operating window, as specified by the manufacturer. This is the relevant upper voltage cutoff used in all testing unless otherwise specified (*e.g.*, static capacity tests).
 - $Vmin_{op}$ [V] (optional) corresponds to the lower end of the intended operating window. It is a variable parameter that will generally decrease as the test article ages and the minimum value is typically specified by the manufacturer.
 - *Vmin*₀ [V] manufacturer's specified voltage corresponding to the minimum operating voltage.
 - *Vmin_{pulse}* [V] minimum voltage allowed during discharge pulses of 10s or less.
 - $Vmin_{Low\ T}[V]$ the minimum voltage allowable at less than or equal to 0° C set by the manufacturer and the technical program manager.
 - $V_{nominal}$ [V] The capacity weighted average voltage measured between Vmax₁₀₀ and Vmin₀. It is determined by the ratio between the total discharge energy and discharge capacity from the static capacity test (see Section 3.1.5).

USABC Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

1. PURPOSE AND APPLICABILITY

This manual defines a series of tests to characterize aspects of the performance or life behavior of batteries for 48 Volt Mild Hybrid Electric Vehicle (48V HEV) applications. Tests are defined based on the Vehicle Technologies Office targets for 48 V HEVs and it is anticipated that these tests may be generally useful for testing energy storage devices designed for this purpose. The test procedures in this manual are directly applicable to complete battery systems. However, most of these test procedures can also be applied with scaling of the test profiles to those appropriate for cells or modules. Much of the rationale for the test procedures and analytical methodologies utilized in this manual evolved from the USABC Electric Vehicle Battery Test Procedure Manual (Reference 1), the PNGV Battery Test Manual (Reference 2), the FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles (Reference 3), the Battery Test Manual for Plug-In Hybrid Electric Vehicles (Reference 4), and the Battery Test Manual For 12 V Start/Stop Vehicles (Reference 5). Deviations from the test or analysis procedures defined in this manual must be approved by the USABC technical program manager.

1.1 USABC Energy Storage Targets For 48 Volt Mild Hybrid Electric Vehicles

The Department of Energy's Vehicle Technologies Office Energy Storage Targets for 48V HEVs are the primary driving force for the test procedures and methods defined in this manual. These targets are outlined in Table 1. Establishing or verifying battery performance in comparison to these targets is a principal objective of the test procedures and analysis methodologies defined in this manual.

Table 1. USABC Energy Storage System Performance Targets For 48V Mild Hybrid Electric Vehicles

End of Life Characteristics	Units	Target
Peak Pulse Discharge Power, 10s	kW	9
Peak Pulse Discharge Power (1s)	kW	11
Peak Regen Pulse Power (5s)	kW	11
Cold cranking power at -30 °C (three 4.5-s pulses, 10s rests between pulses at min SOC)	kW	6-kW for 0.5s followed by 4 kW for 4s
Accessory Load (2.5 min duration)	kW	5
Available Energy	Wh	3131
CS 48V HEV Cycle Life	Cycles/MW h	75,000 /21.8
Calendar Life at 30°C	Years	15
Minimum round trip energy efficiency	%	95
Maximum allowable self-discharge rate	Wh/day	2
Maximum Operating Pulse Voltage	Vdc	52
Minimum Operating Pulse Voltage	Vdc	38
Minimum Voltage During Cold Crank	Vdc	26
Unassisted Operating Temperature Range (Power available to allow 5s charge and 1s discharge pulse) at min. and max. operating pulse SOC	°C	-30 to + 52
30 °C – 52 °C	kW	11
0 °C	kW	5.5
-10 °C	kW	3.3
-20 °C	kW	1.7
-30 °C	kW	1.1
Survival Temperature Range	°C	-46 to +66
Maximum System Weight	kg	≤8
Maximum System Volume	L	≤8
Maximum System Selling Price (@250k units/year)	\$	\$275

NOTES* The United States Advanced Battery Consortium has decided that the Available Energy can be regen limited (unable to accept complete regen at the upper end of the SOC range) when verifying peak regen rate.

¹ The available energy goal of 313 Wh is the sum of the available energy for cycling, 105 Wh, and the available energy needed for the accessory load, 208 Wh.

2. TEST PROFILES DERIVED FROM USABC TARGETS

The test procedures described in this manual are intended for use over a broad range of devices at various stages of developmental maturity. The approach taken for these procedures is to define a small set of test profiles based on the overall vehicle characteristics, independent of the size or capability of the device to be tested. These test profiles are specified in terms of the characteristics of vehicle power and energy demand. They can be used in various combinations, with the appropriate scaling factors, to define specific performance, calendar or cycle life tests for cells, modules or battery systems.

3. TEST PROCEDURES

3.1 General Test Conditions and Scaling

In general, USABC testing is divided into three broad phases, *i.e.*, characterization, life, and reference performance testing. Characterization testing establishes the baseline performance and includes capacity, hybrid pulse power characterization, self-discharge, cold cranking, thermal performance, and efficiency tests.² Life testing establishes behavior over time at various temperatures, states of charge and other stress conditions and includes both cycle life and calendar life testing. Reference Performance Tests establish changes in the baseline performance at the beginning of life and are performed periodically during life testing, as well as at the start and end of life testing. A generic test plan for USABC testing is outlined in Appendix A; this outline can be used as a starting point for device-specific test plans.

3.1.1 Voltage Limits

Several voltage limits are defined in this manual for the purposes of testing and analysis (see Appendix C). The electrochemical voltage range between 100% state of charge (SOC) and 0% SOC are referred to as Vmax₁₀₀ and Vmin₀, respectively. Since most energy storage devices in 48V HEV applications will rarely (if ever) operate at 100% SOC, the test protocols defined in this manual assume a maximum operating voltage, Vmax_{op} which corresponds to the upper end of the intended operating window, and is typically below Vmax₁₀₀. For the purposes of this manual, a "fully charged device" is when the device has been charged to Vmax_{op} using the manufacturer's recommended procedure, unless otherwise specified. The initial static capacity tests (Section 3.2) are generally the only condition in which a test article is discharged between Vmax₁₀₀ and Vmin₀ to ensure stability in the rated capacity. All subsequent tests should be conducted within the operating window between Vmax_{op} and Vmin₀. Thus, the time spent at conditions higher than Vmax_{op} for the sole purpose of testing (and not simulating the intended application strategy) is avoided, thereby minimizing any test-induced degradation mechanisms that may not be representative of the vehicle operation. The value for Vmax_{op} should be supplied by the manufacturer but if not, it can be estimated by discharging a percentage of the rated capacity specified by the manufacturer that equates to the maximum state of charge the battery would see during normal operation. The discharge would start from Vmax₁₀₀ at beginning of life, resting for 1 hour to ensure

^{2.} In this manual, unless specifically stated otherwise, the desired test condition is typically established as a percentage of the rated capacity, which is always reached by removing the appropriate fraction of the rated capacity from a fully charged device (normally at a constant HPPC current discharge rate.) Also, the term "fully charged" means "charged in accordance with the manufacturer's recommended procedure" to Vmax_{op} for operation.

electrochemical equilibrium, and then observing the open circuit voltage. If the maximum state of charge is unknown then it will be assumed that $Vmax_{op}$ is equal to $Vmax_{100}$.

In addition to the operating voltage limits, the maximum and minimum pulse voltage limits (Vmax_{pulse}, Vmin_{pulse}) should also be specified by the manufacturer for short duration charge (\leq 10s) or discharge (\leq 1s) pulses, respectively. A minimum voltage condition (Vmin_{LowT}) should also be specified for short duration pulses (\leq 10s) that are conducted at low temperatures (*i.e.*, \leq 0°C). All of these voltage limits must be carefully observed during performance testing to ensure proper operation of the energy storage device.

3.1.2 Temperature Control

To the extent possible, all testing should be conducted using environmental chambers. When changing the ambient temperature, the test article should be soaked for a period of time to ensure thermal equilibrium (4 to 16 hrs, depending on size and mass of the device). Unless otherwise specified in a device-specific test plan, the ambient temperature for all tests shall be controlled at a default nominal temperature of $30^{\circ}\text{C} \pm 3^{\circ}\text{C}$. As a general practice, a rest of 60 minutes (or more if required) should be observed after each charge and each discharge prior to proceeding with further testing, to allow devices to reach stable voltage and temperature conditions.

3.1.3 Pressure Controls (Pouch Cells)

Unless otherwise specified in a device-specific test plan, pouch pressure should be established by placing the device between two thermally non-conductive plates with four to six bolts around the edges that are tightened using torque specifications provided by the manufacturer (or finger tightened if no specification is provided). Preferably, spacers between the two plates should be used to ensure a sufficient gap between the plates. As a general practice, once the pouch pressure has been set, the device should be placed in an environmental chamber and remain undisturbed for the duration of the test period. The devices should occasionally be visually inspected periodically for any signs of swelling or leaking.

3.1.4 Scaling of Performance for Constant Power Test Profiles

Testing any device smaller than a full-size system (*i.e.*, full-size vehicle battery) requires a method for scaling these test profiles to a level appropriate to the size of the device (cell, module, or sub-battery) under test. This is done by using a *battery size factor*. For purposes of this manual, the Battery Size Factor (BSF) is defined as the minimum number of units (cells, modules or sub-batteries) of a given design required for a device to meet all USABC targets, including cycle life and calendar life. Wherever possible, the Battery Size Factor will be specified by the manufacturer, based on the manufacturer's testing and best estimates of any allowances needed for system burdens and degradation over life.

If insufficient data exist to allow the manufacturer to determine a meaningful value, the Battery Size Factor will be determined from the beginning-of-life Low Current HPPC test (with a capacity measurement using a $C_1/1$ rate current instead of the scaled 5 kW rate) results by applying a nominal power margin of 30% to allow for degradation resulting from cycle life and calendar life effects. See Section 4.4.10 for details of this determination.³

In some cases, this value and/or the associated voltage limits may require modification to ensure that the USABC round-trip efficiency targets are also met.

Once the Battery Size Factor is determined, it becomes a constant (*i.e.*, fixed over life) scaling factor for all subsequent performance and cycle life tests. Any test profile (except HPPC or calendar life) is then scaled by dividing the nominal profile power levels by the Battery Size Factor. For example, if the Battery Size Factor is 36 for a particular cell design, the 6-kW Cold Cranking test would then be performed at a pulse power level of 6000/36 = 166.7 W for such cells. There may be some cases where the BSF is not required to be an integer, with approval from the technical program manager (*e.g.*, when prototype cell designs have different electrode surface areas than the final design).

3.1.5 Charging Procedure

The manufacturer is responsible for defining a reasonable charging procedure with the assistance of the technical program manager. This charging procedure should specify rest periods before and after charging is performed (at least 1 hour is recommended, but it can be adjusted based on the needs of the chemistry). In addition to the standard charging procedure provided by the manufacturer, a constant power charge rate will be used to bring the battery to Vmaxop where the current can be tapered until it falls below the manufactures specified level. The constant power value will be a scaled power that is 5 times the Available Energy at BOL. If the Available Energy has not been determined then 5 times the Available Energy Target should be used, 5*313Wh/1h = 1.565kW.

3.2 Static Capacity Test

This test measures device capacity in ampere-hours at a $C_1/1$ constant current discharge rate corresponding to the rated capacity. This test is used as both an acceptance test and a verification of the manufacturer rated capacity. A stable discharge capacity must be attained, and the discharge capacity should be within 10% of the manufacturers rated capacity. Discharge begins following a default rest from a fully-charged state at $V_{max_{100}}$ and is terminated on a manufacturer-specified discharge voltage limit (V_{min_0}), followed by a default rest at open-circuit voltage. If the measured capacity is significantly different from the rated (*i.e.*, more than $\pm 10\%$), notify the technical program manager before continuing testing and determine if the capacity needs to be re-rated.⁴ The static capacity test is to be performed until three consecutive discharge capacities are stable within $\pm 2\%$ up to a maximum of 10 discharges. If the device is unable to reach stability after 10 discharges, the technical program manager should be notified. The static capacity test can also be repeated using $V_{max_{op}}$ as the fully charged condition to ensure stable operating capacity as well. An additional test that may be done to confirm capacity is to discharge a fully charged cell from $V_{max_{100}}$ to V_{min_0} using a constant current equal to the rate found in the previous capacity measurements to confirm that it take 1 hour for the discharge.

3.3 Constant Power Discharge and Charge Tests

This test measures device capacity in ampere-hours and energy in watt-hours at a constant power discharge rate corresponding to a BSF-scaled 5 kW rate. It also measures the coulombs recovered during a constant power charge to the upper operating voltage limit, $Vmax_{op}$. Discharge begins following a one-hour rest from a fully-charged state ($Vmax_{op}$) and is terminated on a manufacturer-specified discharge voltage limit ($Vmin_0$), followed by a one-hour rest at open-circuit voltage. Recharge the device using the

^{4.} If initial Capacity Tests indicate that the manufacturer's rated capacity is clearly not representative of the device's actual capacity, the value to be used as the rated capacity may be re-defined by USABC program management before testing continues. Use of a reasonably representative capacity value is important for high quality HPPC test results.

constant power charge rate described in section 3.1.5, or at a rate determined by the manufacturer and the technical program manager to top of the operating window, typically defined by $Vmax_{op}$. The coulombs and energy returned to the battery at the constant power charge rate should be recorded. Once the top of the operating window is reached, use the manufacturer's recommended procedure to ensure the device is "fully charged". This test can also be performed using the HPPC-Current rate between the top of the operating window and $Vmin_0$ for comparison with the constant power discharge.

The HPPC-Current is calculated using the formula below.

$$I_{HPPC} = P_{CPD}/(V_{nominal} * BSF)$$

Where P_{CPD} is the Constant Power Discharge target, and $V_{nominal}$ is the average electrochemical voltage between $V_{max_{100}}$ and V_{min_0} (i.e., total energy divided by capacity). An analogous value for the constant power charge rate can be determined replacing P_{CPD} with the constant power charge rate. The constant current rate method must have approval from the technical program manager.

The results from this test will be used to compare the battery to the Accessory Load goal in Table 1.

3.4 Hybrid Pulse Power Characterization Test

The Hybrid Pulse Power Characterization (HPPC) Test is intended to determine dynamic power capability over the device's useable voltage range using a test profile that incorporates both discharge and regen pulses. The first step of this test is to establish, as a function of capacity removed or useable energy, (a) the Vmin_{pulse} 1-s and 10-s discharge power capability at the end of a 10-s discharge pulse and (b) the Vmax_{pulse} regen power capability at the end of a 10-s regen pulse.⁵ These power and energy capabilities are then used to derive other performance characteristics such as Available Energy and Peak Pulse Power for direct comparison with the targets specified in Table 1.

Additional data from the HPPC test include the voltage response curves, from which the fixed (ohmic) cell resistance and cell polarization resistance as a function of capacity removed can be determined assuming sufficient resolution to reliably establish cell voltage response time constants during discharge, rest, and regen operating regimes. The OCV *versus* discharge capacity is also established through the 1-hour rest periods of the pulse testing step. These data can be used to evaluate resistance degradation during subsequent life testing and to develop hybrid battery performance models for vehicle systems analysis.

3.4.1 Hybrid Pulse Power Characterization Test Profile

The objective of this test is to determine the 1-second and 10-second discharge-pulse and the 5-second regen-pulse power capabilities at each 10% increment relative to the beginning of life (BOL) rated capacity (e.g., for a 2 Ah cell, power capabilities are assessed at 0.2 Ah increments between Vmax_{op} and Vmin₀). Between each pair of discharge and regen pulses, the device is discharged to the next 10% increment based on rated capacity using the $C_1/1$ rate. The pulse profile is shown in Table 2 and Figure 1.

^{5.} Vminpulse and Vmaxpulse refer to the device minimum and maximum voltages that correspond to the pulse voltage range for the purposes of this manual as defined in Section 3.1.1. For cells, the specific voltages can be any values appropriate to the technology as long as they fall within the BSF-scaled limits in Table 1. Expanded definition of voltages can be found in Appendix C.

Note that the current values are relative, not absolute. The actual current values are determined as defined at the end of Section 3.4.2. Also, note that this manual uses positive values for discharge current and power, whereas charge or regen values are negative.

Table 2. Hybrid Pulse Power Characterization Test profile.

Time Increment (s)	Cumulative Time (s)	Relative Currents
10	10	1.00
40	50	0
10	60	-1.00

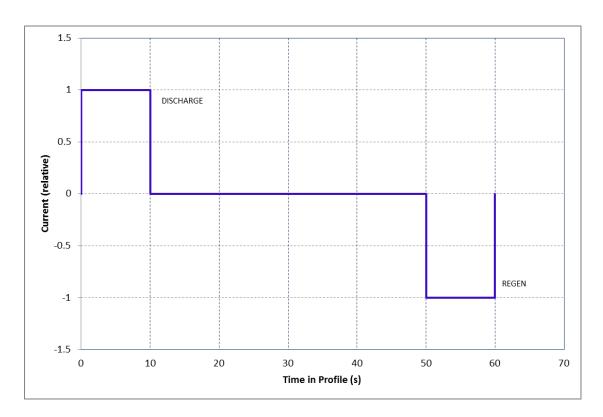


Figure 1. Hybrid Pulse Power Characterization Test profile.

3.4.2 Test Procedure Description

The HPPC test incorporates the pulse power characterization profile as defined in Section 3.4.1. Constant current steps are used in the ratios listed in Table 2. The test is made up of single repetitions of this profile, followed by a discharge to the next 10% increment based on rated capacity using $C_1/1$ rate, each followed by a default rest period to allow the cell to return to an electrochemical and thermal equilibrium condition before applying the next profile.

Note that battery developers typically specify a nominal capacity, which corresponds to a pair of voltage limits representing 0% and 100% SOC at beginning of life (BOL). These are defined as Vmin₀ and Vmax₁₀₀ for the purposes of this manual (see Section 3.1.1 and Appendix C). Separately, a developer will supply (or testing will determine) a recommended voltage range of operation, which will be less than the full 100% SOC span associated with the nominal capacity. The upper voltage limit of the intended operating window is typically defined as Vmax_{op}; it is fixed at BOL for all subsequent HPPC testing as the "fully charged" condition for operating mode and is used as the basis for determining the percentage of the rated capacity removed (*i.e.*, 0% capacity removed at Vmax_{op}) for the Power vs. Energy curves from which parameters of interest are determined. The manufacturer may give an alternative method to define the operating window, if it can not be sufficiently determined by voltage, with the approval of the program manager and testing lead. Note that the manufacturer may also supply an alternative maximum and minimum voltage limit for short-duration pulse conditions (*i.e.*, Vmax_{pulse} and Vmin_{pulse}).

The HPPC test begins with a device charged to $Vmax_{op}$ using the manufacturer recommended procedure. Following a default rest period (nominally a 1-hour rest), an HPPC profile is performed immediately followed by a discharge to the next 10% increment of the rated capacity at the $C_1/1$ rate (based on the established rated capacity at BOL) and a default rest. This sequence is repeated until the final profile at or near 90% of the rated capacity removed (or the maximum discharge specified by the manufacturer). The test terminates with a discharge of the device at the $C_1/1$ rate to $Vmin_0$ and a final default rest. If at any point, $Vmin_0$ is reached during the HPPC pulse then taper the current to finish the profile. If $Vmin_0$ is reached during one of the 10% removal section, stop the test. The voltages during each rest period are recorded to establish the cell's OCV (open-circuit voltage) behavior. The sequence of rest periods, pulse profiles, and discharge segments is illustrated in Figures 2 and 3. These figures also illustrate a $C_1/1$ discharge to be executed just prior to each HPPC Test.

LOW CURRENT HPPC TEST—The pulse profile discharge current is equal to 5 times the $C_1/1$ (5 $C_1/1$) rating. If the device under test is not able to perform the HPPC test using the 5 $C_1/1$ rate through the SOC range then a lower rate may be used with approval from the technical program manager.

HIGH CURRENT HPPC TEST—The pulse profile discharge current is equal to 75% I_{max} rate. If the device under test is not able to perform the HPPC test using the 75% I_{max} rate through the SOC range then a lower rate may be used with approval from the technical program manager.

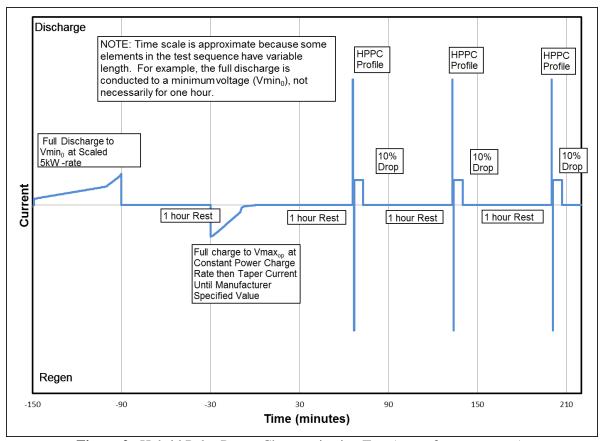


Figure 2. Hybrid Pulse Power Characterization Test (start of test sequence).

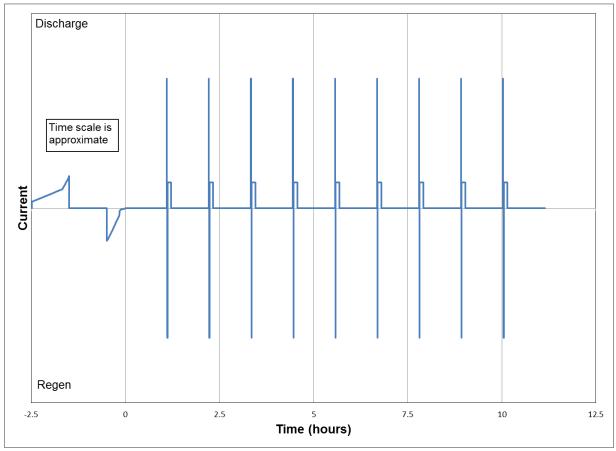


Figure 3. Hybrid Pulse Power Characterization Test (complete HPPC sequence).

3.4.3 HPPC Verification Test (Optional)

In general the HPPC test produces slightly conservative results, because it is normally performed at power levels that are less than the target values. (At higher test currents, internal heating and sub-linear voltage *versus* current relationships lowers the measured battery resistance and predicts higher power capability.) In some cases (*e.g.* when a new technology, a new cell design or a full-size battery design is tested for the first time), it may be desirable to verify the extent of this conservatism by performing a test at the actual target values. This is done using a special test sequence as follows:

- 1. Charge the battery at the constant power charge rate to Vmaxop, stop charge once Vmaxop is reached and rest for one hour at open-circuit conditions, perform a regen pulse at the BSF-scaled 11 kW, 5 second target Peak Regen Pulse Power from Table 1.
- 2. Recharge the device to Vmax_{op} using the manufacturer's recommended procedure and rest for one hour at open-circuit conditions.
- 3. Remove the energy corresponding to the Discharge Pulse target ($E_{Discharge}$, as defined in Section 4.4.4) at a $C_1/1$ constant-current discharge rate, and then rest for one hour at open-circuit conditions.
- 4. Perform a discharge pulse at the BSF-scaled 9 kW, 10 second target Peak Discharge Power from Table 1.

The results of this test can be used to verify that the HPPC-predicted power capabilities and energy values are actually achievable and that they are not excessively conservative.

3.5 Self-Discharge Test

3.5.1 Standard Self Discharge Test

This test is intended to determine the temporary capacity loss that results from a cell or battery standing (*i.e.*, at rest) for a predetermined period of time. The test consists of the following sequence of activities:

- 1. Recharge the device to the top of the operating window, typically defined by $Vmax_{op}$, using the manufacturer's recommended procedure and rest for one hour at open-circuit conditions.
- 2. Discharge the device to Vmin₀ at a BSF-scaled 5kW rate and rest for one hour at open-circuit conditions. Record the actual discharge capacity from this step.
- 3. Recharge the device to the top of the operating window, typically defined by Vmax_{op}, using the manufacturer's recommended procedure and then rest for one hour at open-circuit conditions.
- 4. Remove the energy that cannot be returned to the battery at the constant power charge rate plus the BSF-scaled 313 Wh from the cell at the BSF-scaled 5kW rate and allow the battery to stand in an open-circuit condition for a nominal interval of 7 days. All measurement equipment may need to be disconnected from the cell during this period to reduce parasitic losses.
- 5. Discharge the cell for its remaining (residual) capacity at a BSF-scaled 5kW rate.

3.5.2 Extended Stand Test

This test is intended to determine the capacity loss and cold cranking capability that results from a cell or battery standing (*i.e.*, at rest) for a 30 days at 30°C. The test consists of the following sequence of activities:

- 1. Recharge the device to the top of the operating window, typically defined by Vmax_{op}, using the manufacturer's recommended procedure and rest for one hour at open-circuit conditions.
- 2. Discharge the device to Vmin₀ at a BSF-scaled 5kW rate and rest for one hour at open-circuit conditions. Record the actual discharge capacity from this step.
- 3. Recharge the device to the top of the operating window, typically defined by Vmax_{op}, using the manufacturer's recommended procedure and then rest for one hour at open-circuit conditions.
- 4. Remove the energy that cannot be returned to the battery at the constant power charge rate plus the BSF-scaled 313 Wh from the cell at the BSF-scaled 5kW rate and allow the battery to stand in an open-circuit condition for an interval of 30 days at 30°C. All measurement equipment may need to be disconnected from the cell during this period to reduce parasitic losses.

- 5. Perform the Cold Cranking Test as described in Section 3.6.
- 6. Discharge the cell for its remaining (residual) capacity at a BSF-scaled 5kW rate.

3.6 Cold Cranking Test

The Cold Cranking test is intended to measure the 4.5-s power capability at low temperature (normally -30°C) for comparison with the USABC Cold Cranking Power target(s) in Table 1. The test is conducted where the USABC Available Energy target is just met or at the residual capacity level determined during the extended stand test (Section 3.5.2). The test consists of the following sequence of activities:

- 1. At normal ambient temperature, bring the device to the cold cranking condition using one of the following approaches:
 - a. From a fully charged condition, remove the energy that cannot be returned to the battery at the constant power charge rate plus the BSF-scaled 313 Wh at a BSF-scaled 5kW rate.
 - b. From the Extended Stand test (Section 3.5.2); the device is already at the cold cranking condition.
- 2. Reduce the ambient temperature to −30°C, and soak the device for a period of time (4 to 16 hrs, depending on size and mass of the device) adequate to ensure it has reached thermal equilibrium at this temperature.
- 3. Perform the Cold Cranking Test profile defined in Section 3.6.1. The pulse power level to be used is 6-kW and 4-kW divided by the Battery Size Factor as determined in Sections 3.1.4 and 4.4.10. Note that the manufacturer may specify a different minimum discharge voltage for cold cranking testing (Vmin_{LowT}). This voltage, if specified, will be used for both test control and the subsequent calculation of cold cranking power capability; but it may not exceed the USABC minimum voltage for cold crank in Table 1. Note also that the profile pulses must be performed for the full 4.5-s duration (even if the test power has to be limited to stay within the minimum discharge voltage) to permit the later calculation of Cold Cranking power capability. This test may also be performed at other SOC conditions with approval from the technical program manager.

3.6.1 Cold Cranking Test Profile

The Cold Cranking Test profile is a literal implementation of the Cold Cranking Power targets, which require the capability to provide 6-kW of discharge power for 0.5-s followed by 4-kW for 4-s for a total of three 4.5-s pulses at 14.5-s intervals (*i.e.*, 10 s between pulses.) The profile is defined in Table 3 and illustrated in Figure 4

Table 3. Cold Cranking Test profiles.

Time Increment (s)	Cumulative Time (s)	System Power (kW)
0.5	0.5	6
4	4.5	4
10	14.5	0
0.5	15	6
4	19	4
10	29	0
0.5	29.5	6
4	33.5	4
10	43.5	0

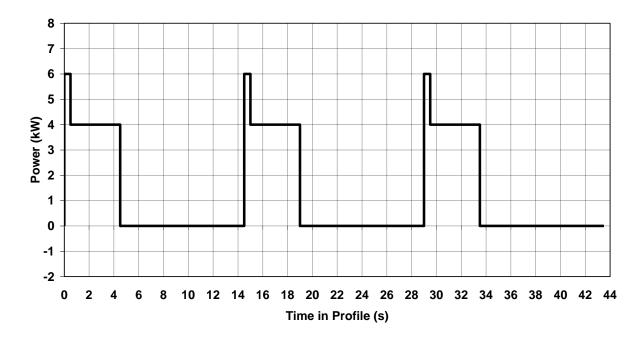


Figure 4. Cold Cranking Test profiles.

3.7 Thermal Performance Test

The effects of environment (ambient temperature) on device performance will be measured as required by performing a BSF-scaled 5kW constant power discharge, and Low-Current Hybrid Pulse Power Characterization Test at various temperatures within the USABC operating temperature target. At the cell level, such testing has two targets: to characterize the performance of the technology as a function of temperature and to bound the likely constraints on thermal management of full-size cells or batteries. At

the module and system level, the emphasis of thermal performance testing is increasingly dependent on thermal management system design and behavior.

Unless otherwise specified in a device-specific test plan, initial charging should be performed at 30°C during thermal performance testing. This implies a test sequence as follows: (1) fully charge the device at 30°C; (2) raise or lower the device ambient temperature to the target value; (3) wait a suitable soak period for thermal equalization, typically 4 to 16 hrs depending on size and mass of the device; and (4) execute the desired performance test. If self-discharge is a major concern during the soak period, the device can be clamped at a voltage during this period; however, this requires knowledge of the cell OCV-versus-temperature behavior to ensure that the SOC is not changed inadvertently. Typical temperatures for the thermal performance test consist of 52°C, followed by 0, -10, -20, and -30°C. Thermal testing at temperatures below 0°C should be halted once the test article demonstrates an inability to meet the targets.

It may be necessary to adjust the rest intervals in the HPPC Test to ensure that thermal stability as well as voltage equilibrium is reached before each repetition of the pulse power characterization profile.

3.7.1 Survival Temperature Test

The survival temperature test is generally performed on a group of devices that will not be used for calendar and cycle life testing. This test may drastically affect or reduce the performance of the device. The effects of survival temperature on device performance will be measured as required within the USABC temperature target. Unless otherwise specified in a device-specific test plan, charging should be performed at the reference temperature (*i.e.*, 30°C). The device should generally be at BOL conditions for this test and other tests shall not be performed at these storage temperature limits.

The cold storage test is performed as follows:

- 1. From a fully charged state at the top of the operating window, typically defined by $Vmax_{op}$, perform a $C_1/1$ constant current discharge capacity measurement followed by a L-HPPC test.
- 2. From a fully charged state at the top of the operating window, typically defined by $Vmax_{op}, \ bring \ the \ device \ to \ the \ voltage \ corresponding \ to \ V_{nominal} \ at \ 30^{\circ}C \ using \ the \ C_{1}/1 \ constant-current \ rate. \ Taper \ the \ current \ at \ V_{nominal} \ following \ the \ manufacturer's \ recommended \ procedure. \ An alternative method \ may \ be \ used \ if \ a \ nominal \ state \ of \ charge \ can \ not \ be \ reached \ using \ V_{nominal} \ with \ approval \ from \ the \ technical \ program \ manager.$
- 3. Ramp the thermal temperature chamber to the specified minimum survival temperature within 1-hr and then soak the device for a 24-hr period (for a pack-level device, no fan should be running for this test).
- 4. Return to 30°C and rest for at least 4 to 16 hrs (depending on the size of the device).
- 5. From a fully charged state at the top of the operating window, typically defined by $Vmax_{op}$, perform a $C_1/1$ constant current discharge capacity measurement followed by a L-HPPC test.

The hot storage test is performed as follows:

- 1. From a fully charged state at the top of the operating window, typically defined by $Vmax_{op}$, perform a $C_1/1$ constant current discharge capacity measurement followed by a L-HPPC test.
- 2. From a fully charged state at the top of the operating window, typically defined by $V_{max_{op}}$, bring the device to the voltage corresponding to $V_{nominal}$ at 30°C using the $C_1/1$ constant-current rate. Taper the current at $V_{nominal}$ following the manufacturer's recommended procedure. An alternative method may be used if a nominal state of charge can not be reached using $V_{nominal}$ with approval from the technical program manager.
- 3. Ramp the thermal temperature chamber to the specified maximum survival temperature within 15-min and then soak the device for a 24-hr period (for a pack-level device, no fan should be running for this test).
- 4. Return to 30°C and rest for at least 4 to 16 hrs (depending on the size of the device).
- 5. From a fully charged state at the top of the operating window, typically defined by $Vmax_{op}$, perform a $C_1/1$ constant current discharge capacity measurement followed by a L-HPPC test.

Note that if the intent of the testing is to verify both the cold and hot storage, the HPPC test at the end of the cold storage test and/or the HPPC test at the start of the hot storage testing can be omitted.

3.8 Energy Efficiency Test

Round-trip efficiency is determined at the cell level by calculation from a charge-balanced pulse profile. The energy efficiency test profile is defined in Sections 3.8.1. This profile has been constructed for use in both energy efficiency and cycle life testing. This test is performed similarly to the Operating Set Point Stability (OSPS) Test, as follows:

- 1. Bring the device to a specified target SOC value and operating temperature using the C₁/1 constant-current rate.
- 2. Perform 100 profiles as defined in Section 3.8.1.
- 3. Determine the change (if any) in the state of charge before and after the 100 profiles. Allow a 1-hr rest period before and after the 100 profiles are performed to determine any change in open-circuit voltage.
- 4. If the initial and final SOC values are different (by 1% or more, unless otherwise directed by the technical program manager), or the data indicate that stable cycling was not achieved by the completion of 100 profiles, the OSPS test (Section 3.9) shall be conducted with implemented voltage control values or other limits, as appropriate.

3.8.1 48 Volt HEV Energy Efficiency Test Profile

The 48Volt HEV energy efficiency test profile is a 354-s, nominally charge-neutral pulse profile (also used as the 48V HEV Cycle Life Test profile) that is scaled to a level appropriate to verify the round trip energy efficiency target of 95%. This test profile is defined in Table 4 and illustrated in Figure 5.

Table 4. 48 Volt Mild Hybrid Electric Vehicle Cycle Life Test profile.

Time			Energy	Cumulative
Increment	Cumulative		Removed	Energy Removed
(s)	Time (s)	Power (kW)	(Wh)	(Wh)
39	39	3.0	32.5	32.5
1	40	11.0	3.1	35.6
31	71	-1.29	-11.1	24.4
5	76	-9.0	-12.5	11.9
17	93	3.0	14.2	26.1
1	94	11.0	3.1	29.2
31	125	-1.29	-11.1	18.1
5	130	-9.0	-12.5	5.6
6	136	3.0	5.0	10.6
1	137	11.0	3.1	13.6
31	168	-1.29	-11.1	2.5
5	173	-9.0	-12.5	-10.0
36	209	3.0	30.0	20.0
1	210	11.0	3.1	23.1
31	241	-1.29	-11.1	11.9
5	246	-9.0	-12.5	-0.6
14	260	3.0	11.7	11.1
10	270	11.0	30.6	41.7
31	301	-1.29	-11.1	30.6
5	306	-9.0	-12.5	18.1
3	309	3.0	2.5	20.6
1	310	11.0	3.1	23.6
31	341	-1.29	-11.1	12.5
5	346	-9.0	-12.5	0.0
8 ⁷	354	-3.355 ⁸	-7.456	-7.456

^{6.} These profiles are calculated to be charge-neutral for a device that is about 95% energy efficient. Note that the Efficiency Test may also serve as the initial OSPS Test if the same SOC value and temperature are used.

^{7.} The final step in the profile is intended as a constant voltage step. The values represent an average power over 8 seconds that will result in an efficiency of 95%.

*Note: The profile will be controlled by the target voltage and the coulombic efficiency will be monitored.8

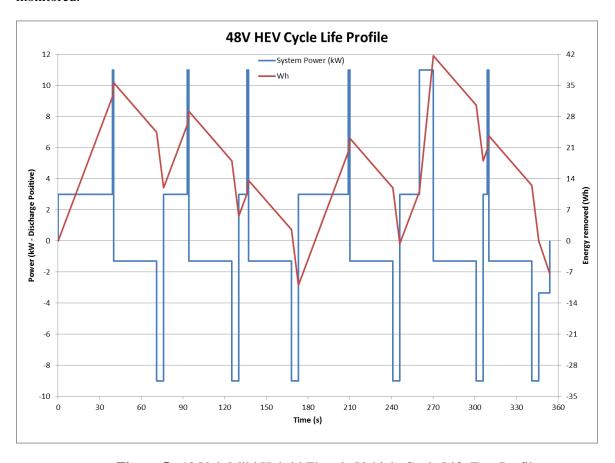


Figure 5. 48 Volt Mild Hybrid Electric Vehicle Cycle Life Test Profile

3.9 Operating Set Point Stability Test

This test is a special case of the cycle life testing regime to be applied to a given cell or battery. Since cycle life testing is normally done at an intermediate state of charge, it is necessary to determine that stable cycling will occur at the target SOC, and to adjust test conditions if necessary to ensure that this will be the case. The target state of charge for the cycle life test(s) defined in Section 3.10 is normally specified in a device-specific test plan based on projected use of the device. This test should be performed immediately before the beginning of cycle life testing.

^{8.} Alternatively, the profile can be controlled with 100% energy efficiency while monitoring the voltage drift with approval from the technical program manager.

^{9.} There is no "default nominal" state of charge for life cycling. However, if the appropriate value is not known in advance of the start of testing, the range of useable target SOC values can be determined from the HPPC test results (see Section 4.4) based on the peak discharge and regen powers planned for cycle life testing.

With the cell at the selected state-of-charge value and all other conditions (e.g., operating temperature) as required for life cycling, apply the Cycle Life Test profile for a period long enough to reach thermal steady-state and to return to the target SOC.¹⁰ Determine the change (if any) in the state of charge before and after the cycling interval. Allow the device to cool to $+3^{\circ}$ C of the target temperature with at least a 1-hr rest before and after this cycling is performed to determine any change in open-circuit voltage. The residual capacity can also be removed at a $C_1/1$ constant-current rate to verify the depth of discharge at the end of the cycling interval if the final SOC values are different by 1% or more.

3.9.1 Adjusting the Operating Set Point

If the cell does not reach a consistent voltage and temperature profile during the cycling interval, upper or lower voltage constraints or other limits may be adjusted (within manufacturer limits) to provide stable cycling conditions, and this test may be repeated or extended if necessary. If the power of the last 8 seconds of the cycling profile of Table 4 exceeds a BSF-scaled 9 kW, the power limit of one or more of the discharge steps may need to be increased, but not beyond the power targets of Table 1. The test may also be repeated at the beginning of any cycle life testing interval if the cell condition has changed significantly.

3.9.2 Controlling the State of Charge during the OSPS Test

The preferred approach to maintaining a target state of charge during the OSPS test and later cycle life testing depends on the test profile used and on test equipment capabilities. Guidelines for accomplishing this and the specific method to be used can be called out in a device-specific test plan. The last step of the cycle life test profile of Table 4 is intended to help accomplish this.

Note that achieving the target SOC and a stable cycling condition are related but separate constraints. The maximum and minimum pulse voltages from profile to profile are usually the most sensitive indicators of stable cycling (unless the device resistance is changing during the cycling period), while the SOC during cycling must actually be measured after cycling stops. The intent of this test is to establish control parameter values, and if necessary to fine-tune the test profile, such that life cycling can be performed continuously over the intervals between reference tests specified in Table 6.

3.10 Cycle Life Test

Cycle life testing is performed using the Cycle Life Test profile defined in Section 3.10.2. The test sequence is performed by repeating this profile at a fixed state of charge. Control of the state of charge is addressed in detail in Section 3.9.2.

3.10.1 Cycle Life Test Procedure Outline

The cycle life testing process consists of the following steps:

- 1. Scale the test profile by dividing the power values by the Battery Size Factor.
- 2. Bring the device to a specified target SOC value and operating temperature using the C₁/1 constant-current rate.

^{10.} This typically requires approximately 100 complete pulse profiles.

- 3. If necessary, conduct the Operating Set Point Stability Test (Section 3.9) to ensure stable operation at the selected SOC condition. Make any needed adjustments to the test profile or test operating conditions as necessary.
- 4. Once stable operation has been established, repeat the test profile at the desired operating conditions the number of times specified in Table 6 or in a device-specific test plan.
- 5. After the specified number of repetitions, suspend cycling. If cycling is being done at other than 30°C, return the cell to 30°C. Observe the open-circuit voltage after a suitable rest period to ensure electrochemical and thermal equilibrium (4 to 16 hours depending on the size of the device). Remove the residual capacity at a C₁/1 constant-current rate to verify the cycling depth of discharge, and perform one or more Reference Performance Tests to determine the extent of degradation in capacity and/or power capability. The reference tests are listed in Table 6. The intervals between repetitions of these reference tests are also specified in Table 6, though these may be adjusted somewhat if required for time synchronization of cells being tested under different test regimes.
- 6. If the residual capacity measured in Step 5 indicates an unacceptable drift during cycling, repeat Step 3 to re-establish the target cycling condition.
- 7. Repeat Steps 4 and 5 until an end-of-test condition is reached.

The end-of-test criteria for life testing are normally specified in a device-specific test plan. A default (and generally mandatory) end-of-test condition is reached when the test profile cannot be executed within both the discharge and regen voltage limits.¹¹ Another default end-of-test condition also occurs if performance degrades to a point where the HPPC Reference Performance Test (RPT) yields insufficient information to show further degradation.¹² Other end of test criteria include: (a) a cycle life capability that meets the targets has been attained (*i.e.*, the number of properly scaled test cycles exceeds the applicable target); or (b) the Available Energy or Available Power drops below the target value. In case (a), the battery may not have reached end-of-life when testing stops, but further testing is not usually considered cost-effective. In case (b), end-of-life has occurred at some prior time.¹³

3.10.2 48 Volt Mild Hybrid Electric Vehicle Cycle Life Test Profile

The objective of this test profile is to demonstrate device life when subjected to different energy use levels and patterns appropriate to the USABC targets. The 48 volt HEV Cycle Life profile is a 354-s pulse profile intended to demonstrate the ability to meet the USABC cycle life target of 75,000 cycles. The profile transfers about 10.625 million watt-hours (MWh) in and out of the device over 75,000 cycles.

These test profiles are all defined at the battery pack level. They are scaled to the appropriate current levels for testing cells and module designs using the Battery Size Factor based on the parallel/series combinations of cells as described in Section 3.1.4.

^{11.} At this point, the device has insufficient available energy and capacity at the test conditions to execute the test, *i.e.*, its capability is less than that required by the test profile.

^{12.} This would normally be the point where valid discharge and regen data are obtained at less than three pulse profiles using the Low-Current HPPC test.

^{13.} Note that *end-of-test* and *end-of-life* are not the same, and they may not even be related. See the glossary for more information on this distinction. The determination of End-of-Life and Cycle Life is discussed in Section 4.10.

Each of the Cycle Life Test profile removes 141.67 Wh on discharge and is nominally charge-balanced for a device that just satisfies the 95% energy efficiency target. The profile is identical to the profile used in the Energy Efficiency test, section 3.8. The profile is listed in Table 4 and illustrated in Figure 5.

3.11 Calendar Life Test

This test is designed to permit the evaluation of cell or battery degradation as a result of the passage of time with minimal usage. It is not a pure shelf life test, because the devices under test are maintained at or near a target state-of-charge during the test. They must also be periodically subjected to reference performance tests to determine the changes (if any) in their performance characteristics.

In general, calendar life testing is performed using multiple cells over a range of test conditions.¹⁴ It is commonly done at elevated temperatures in order accelerate the aging processes. Cells to be tested may be included in a matrix of test variables such as temperature and state of charge. This matrix may in turn be part of a larger cycle life test matrix where calendar life testing is considered a limiting cycle life test, *i.e.*, one in which the state-of-charge swing during cycling is zero. The design of experiments for such a larger test matrix is not described in this manual, but can be found in the Technology Life Verification Testing (TLVT) manual (Reference 6). The calendar life test procedure assumes that the target test conditions for each cell or group of cells have been defined, typically in a device-specific test plan.

3.11.1 Calendar Life Test Planning

Careful planning and analysis of calendar life tests are critical to estimation of battery life with high confidence. Accurate life estimates are, in turn, essential for assessing battery warranty risks and costs.

Calendar life estimates are necessarily based on accelerated test methods. The general approach is to store cells or batteries under open-circuit conditions at elevated temperatures to increase their rates of performance deterioration. The key tradeoff in the selection of storage temperatures is to avoid introducing irrelevant failure modes at too high a temperature, while achieving high rates of deterioration to minimize test time and cost.

At least three elevated temperatures should be selected in addition to the reference temperature. The lowest of these elevated temperatures should result in approximately half of the target life of 15 years, while the highest temperature should result in an end of life condition at the desired test duration (*e.g.*, two years). Other temperatures should be equally spaced between these extremes. At least three cells should be tested at each elevated temperature.

The cells under test should be stored in an open-circuit condition, but with voltage monitoring using sensing circuits that present negligible loads to the devices under test. Periodically, based on criteria for acceptable decay in open-circuit voltages, the cells should be brought back to nominal operating temperature (*e.g.*, 30° C) and their performance measured. Such performance tests should be done at least monthly on each cell.

Key parameters should be monitored by the periodic performance tests, *e.g.*, available energy and power, and minimum voltage (or voltage margin) in the Cold Cranking test procedure. The corresponding end of

20

.

^{14.} The cell terminology in this section is not intended to prevent the calendar life testing of modules or complete batteries. It reflects only the fact that the vast majority of such testing is done at the cell level.

life criteria for these parameters are: (1) available energy or power < target energy or power; and (2) inability to complete the cold cranking test within voltage limits when performed during the RPT as specified in Section 3.12. The test-to-test repeatability of these parameters should be no worse than one percent of the target values (to one standard deviation).

Other guidelines to improve test consistency for multiple cell tests include the following:

- Wherever possible, cells subjected to the same test conditions should be contained in the same test chamber or other environment, preferably using identical test channels, and test intervals should be time-synchronized.
- All cells that are part of a common test matrix should be subjected to reference testing at the same intervals if possible. Minimizing the fraction of time not spent at target temperatures is important for testing at elevated temperatures. However, rapid degradation may take place at very high temperatures; in such cases, the use of uniform test intervals will lead to a reduced number of data points for predicting trends over life. The reference test intervals have been selected to balance these conflicting needs but may need adjustment in special cases.

3.11.2 Calendar Life Test Procedure

The outline of this test procedure for a particular cell is as follows:

- 1. Characterize the cell using the Capacity Test (Section 3.2) and Hybrid Pulse Power Characterization Test (Section 3.4) and other reference tests as appropriate.
- 2. Discharge the fully charged cell to the target test condition at 30°C. This can be done in one of two ways: (1) remove the appropriate fraction of the cell's rated capacity at a C₁/1 rate, or (2) clamp the battery at the open-circuit voltage corresponding to the target test condition while limiting discharge current to a C₁/1 rate and then wait for the voltage and current to stabilize.¹⁵ Note that use of method (1) will typically reach the target test condition more slowly. Method 2, the use of voltage (rather than fractional discharge) as the measure of SOC is the preferred method.
- 3. Apply a single iteration of the Calendar Life Test Profile defined in Section 3.11.3. The nominal discharge current to be used for this profile is equal to the peak discharge current for the L-HPPC Test. Record the open-circuit voltage (which can be a function of temperature.)
- 4. Bring the cell to the target temperature at open-circuit condition and wait for the ambient temperature and voltage to stabilize.
- 5. Apply a single iteration of the Calendar Life Test profile defined in Section 3.11.3 at the same current level defined in Step 3, and apply the voltage hold at the voltage recorded in

^{15.} A value less than 1% of the $C_1/1$ current is probably adequate to meet this criterion, provided this is within the measurement capability of the test equipment.

- step 4. The device is then placed in an open-circuit state and the test continues at the target conditions.
- 6. Once every 24 hours, and immediately before beginning Step 7, repeat Step 5. Note that data acquisition requirements during this pulse profile execution will be similar to those for HPPC tests. Data acquisition requirements during the 24 hour intervals (if desired) should be specified in a device-specific test plan.¹⁶
- 7. At intervals as specified in Table 6 or a device-specific test plan, return the cell to nominal temperature (e.g., 30°C), observe its open-circuit voltage after a suitable rest period to ensure electrochemical and thermal equilibrium (4 to 16 hours depending on the size of the device), and apply a single iteration of the Calendar Life Test profile before discharging its remaining capacity at the $C_1/1$ rate. Conduct a single iteration of the required periodic Reference Performance Tests, and then return the cells to their test temperatures.
- 8. Repeat this test sequence until the cell reaches an end-of-test condition. Default end-of-test conditions are generally analogous to those for cycle life testing in Section 3.10.1: (a) the Calendar Life Test profile cannot be performed within the voltage limits; (b) the HPPC reference test yields insufficient information to show further degradation; (c) calculated Available Energy is less than the target; or (d) sufficient data is acquired to project calendar life at 30°C with a predetermined degree of confidence. Note that condition (d) may take precedence over condition (c) in some cases.

3.11.3 Calendar Life Test Profile

This test profile is intended for once-per-day execution during calendar life testing at the target temperature and state of charge. The data provide daily information regarding the extent and rate of cell degradation during the intervals between periodic reference tests. This test profile differs from Cycle Life Test profiles in that it is not intended for continuous execution; instead, it is executed once during each 24-hr period while the cell under test is maintained at a given temperature and state of charge. The pulse profile is shown in Table 5 and illustrated in Figure 6. This should be a charge-neutral profile, but the voltage limits shall not be violated. Thus, the 60-s discharge step at the end of the profile can include a taper current if a voltage limit is reached. In the case where calendar-life aging is performed at full charge and $Vmax_{op}$ is reached during the 10-s charge, then the 60-s discharge step can be a taper charge step instead.

Table 5. Calendar Life Test profile.

Step Time (s)	Cumulative Time (s)	Relative Current (Ratio)
10	10	1.00
40	50	0

^{16.} Intermittent charge increments may be required to compensate for self-discharge to keep the state of charge within an acceptable range until the next reference test. The method to be employed for doing this should be specified in a device-specific test plan. One suggested method is to clamp each device after the once-per-24-hours profile at its elevated-temperature OCV (as measured in Step 4) for a specified duration sufficient to compensate for increased self-discharge at the target temperature.

10 60 -1.00 300 360 Voltage Clamp

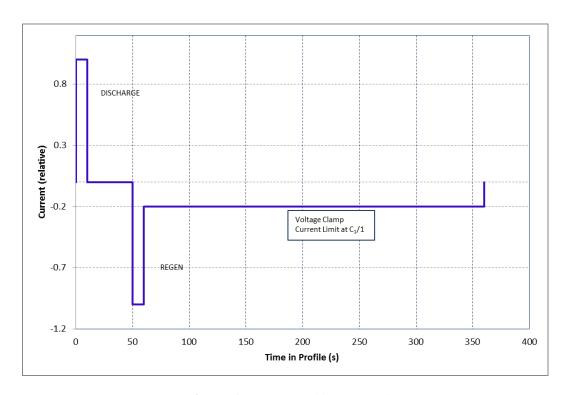


Figure 6. Calendar Life Test profile.

3.11.4 Alternative Calendar Life Test

In some cases calendar life testing may be conducted without using the once-per-day Calendar Life Test profile. The most likely reason for this is a shortage of continuously available test channels for the number of devices to be tested. (If the 24-hr pulse profile is not performed, a test channel is required only for the periodic Reference Performance Tests and possibly for occasional charge increments.) The earlier procedure can be used in this fashion by omitting the daily performance of the test profile specified in Step 6. If testing is performed in this fashion, the device open-circuit voltage should be checked every 24 to 48 hours to verify that the state of charge remains in an acceptable region.

3.12 Reference Performance Tests

Reference Performance Tests (RPTs) are a set of tests performed at periodic intervals during life testing to establish the condition and rate of performance degradation of devices under test. Except as modified by a device-specific test plan, these tests should be performed (a) prior to the start of life testing; (b) at

defined periodic intervals; and (c) at end of testing, for all devices undergoing either cycle life testing or calendar life testing. ¹⁷

A Reference Performance Test iteration consists of one repetition of each test listed in Table 6. It is recommended that these tests be performed in the order listed. Note that the reference temperature for the RPTs shall be $30\pm3^{\circ}$.

Table 6. Standard Reference Performance Tests and Test Intervals for Life testing.

Type of Life Testing	Interval Between RPTs	Reference Performance Tests
Cycle Life Testing	7,810 cycle life profiles	Constant-Power Discharge/Charge Test
Calendar Life Testing	Approximately 32 days	Low-Current HPPC Test Cold Cranking at BOL, 50% of
Other Life Tests	10% of expected life	Cycle Life, and EOL (for Cycle Life)

Table 6 also lists typical intervals for reference tests during cycle life and calendar life testing. In practice, these intervals may have to be adjusted somewhat by the technical program manager to synchronize reference testing for groups of multiple cells, especially where calendar life and cycle life cells are being tested in the same temperature chamber.

^{17.} For battery chemistries that have a strong dependence of performance on temperature, it may be desirable to measure accurately the actual (ambient) temperature of the test article during the RPTs and adjust the performance results using the data from the Thermal Performance Tests (Section 3.7) to estimate the present performance at the nominal 30°C temperature. Performing such an adjustment is necessarily limited to those cases where the following conditions are satisfied: temperature data are available with accuracy better than the variations to be corrected (2°C or less); Thermal Performance Test data are available "near" the normal testing range, *e.g.*, within ±5°C on either side of the nominal temperature; and the test whose data is to be adjusted is conducted within this limited range "near" the nominal temperature.

^{18.} The Cold Cranking Test is performed every 10% life increment for cycle life aging but no requirement is identified in the targets for calendar-life aging and should be specified in a device-specific test plan. If cycle- and calendar-life devices are placed in the same chamber, the calendar-life devices should also be subjected to the Cold Crank Test every 10% life increment. If not, another typical option is to perform the Cold Crank Test at least three times over the life of a device during calendar aging: (1) as part of initial characterization testing, (2) about halfway through the projected life, and (3) at the end of life testing.

4. ANALYSIS AND REPORTING OF TEST RESULTS

4.1 General

For purposes of consistency in test reporting (particularly between multiple testing organizations), a required minimum subset of information, based on the procedures and analysis defined in this manual, has been tabulated in Appendix B as an example. Corresponding data should also be reported for the other 48 V HEV battery targets listed in Table 1, as appropriate. This is not intended to limit the reporting of other test results; the intent is rather to ensure that important test results are reported in a fashion that allows them to be compared to test results on hybrid energy storage devices performed at various locations and stages of development.

4.2 Capacity Test

Capacity in ampere-hours and energy in watt-hours removed at the specified constant power discharge rate are reported based on manufacturer-specified termination conditions. (Note that all of this capacity will not generally be useable within USABC operating conditions, and thus it does not reflect conformance to the USABC Available Energy target. However, it is still considered a useful measure of capacity at the laboratory cell stage.) Energy removed (watt-hours) is reported as a function of depth of discharge (in percent of rated capacity). These data are used for the later calculation of Available Energy. Ampere-hours and watt-hours returned (and the corresponding overall charge/discharge efficiencies) are also reported for the manufacturer-specified charge algorithm. Data for capacity and energy are provided by the Constant Power Discharge/Charge Test, section 3.3.

4.2.1 Capacity Fade

For devices subjected to life testing, the change in capacity from the beginning-of-life value (measured just prior to the start of life testing) to some later point in time is to be reported periodically as Capacity Fade, expressed as a percentage of the original (BOL) capacity as shown in Equation (1).

Capacity Fade (%) =
$$100 \times \left(1 - \frac{Capacity_{t1}}{Capacity_{t0}}\right)$$
 (1)

Where t0 refers to the time of the initial (BOL) RPT and t1 refers to the time of the later RPT where capacity fade is to be determined.

4.2.2 Energy Fade

For devices subjected to life testing, the change in energy from the beginning-of-life value (measured just prior to the start of life testing) to some later point in time is to be reported periodically as Energy Fade, expressed as a percentage of the original (BOL) capacity as shown in Equation (2).

Energy Fade (%) =
$$100 \times \left(1 - \frac{Energy_{t1}}{Energy_{t0}}\right)$$
 (2)

Where t0 refers to the time of the initial (BOL) RPT and t1 refers to the time of the later RPT where energy fade is to be determined.

4.3 Constant Power Discharge and Charge Tests

Capacity in ampere-hours and energy in watt-hours removed at the specified constant power discharge rate are reported based on manufacturer-specified discharge termination conditions. (Note that all of this capacity will not generally be useable within USABC operating conditions, and thus it does not reflect conformance to the USABC Available Energy target. However, it is still considered a useful measure of capacity at the laboratory cell stage.) Energy removed (watt-hours) is reported as a function of depth of discharge (in percent of rated capacity). These data are used for the later calculation of Available Energy.

An important value to obtain from this test is the amount of energy that is not returned to the battery when charging is done at the constant power charge rate. This value is the difference between the constant power discharge energy and the energy returned at the constant power charge rate, energy returned after the battery is clamped at Vmax_{op} is not included.

Ampere-hours and watt-hours returned (and the corresponding overall charge/discharge efficiencies) are also reported for the manufacturer-specified charge algorithm.

The same methodology to determine capacity and energy fade for the Capacity Test in Section 4.2 is used for the Constant Power Discharge and Charge Tests.

4.4 Hybrid Pulse Power Characterization Test

Results from the HPPC test are generally aimed at comparing the performance of a device at a given RPT to the specified targets. Since these targets are expressed at the system level, most HPPC test results must be scaled using the Battery Size Factor (BSF) before such comparisons can be made (See Section 3.1.4). The BSF should be an integer value that aligns with all performance requirements and can be configured for series and/or parallel strings.

This section describes the HPPC analysis methodology using an illustrative dataset. The concepts and associated nomenclatures that are discussed in this analysis section have been defined in the glossary and summarized in Appendix B. Appendix B also describes how to use the HPPC test results to fill in a Gap Analysis.

4.4.1 Overall Analysis Approach

The primary purpose of the HPPC test is to periodically verify how the 1s Discharge Pulse, 10s Discharge Pulse, 5s Regen Pulse, and Available Energy for a given test article compare to the appropriate targets identified in Table 1. To achieve this purpose, several calculations are required based on the acquired test data. At a minimum, the following data need to be captured during the HPPC test for successful comparison with the targets:

- 1. Temperature of the test article during the HPPC test.
- 2. Cumulative capacity (Ah) removed at the end of each 10% increment based on rated capacity, defined at beginning of life and fixed throughout life testing.
- 3. Cumulative capacity (Ah) removed at the end of each discharge pulse within the HPPC profile.

- 4. Measured voltages at the start, at 1 second, and at 10 seconds for the discharge pulse and at the start, and at 5 seconds during the regen pulse within the HPPC profile.
- 5. Measured currents at the start, at 1 second, and at 10 seconds for the discharge pulse and at the start, and at 5 seconds during the regen pulse within the HPPC profile.

From these data, the analysis methodology described herein can be used to determine the BSF-scaled values that are to be compared with the targets. Temperature data are useful to collect during HPPC testing, especially if the performance of the test articles is strongly affected by ambient conditions. Temperature is also a useful diagnostic tool if anomalous data are identified. The measured cumulative capacity data are related to the measured energy removed at a 5 kW rate from the Constant Power test (Section 4.3). The capacity data are also used to establish the percentage of rated capacity removed from Vmax_{op}. From the measured voltages and currents, pulse resistance values are calculated at each 10% increment and subsequently used to identify the corresponding pulse power capabilities. The pulse power capabilities at each 10% increment are then related to the cumulative energy removed at a 5 kW rate.

4.4.2 Pulse Resistance

From the HPPC pulse profile in Figure 1 (Section 3.4.1), resistance can be calculated using a $\Delta V/\Delta I$ calculation at each 10% increment. Resistances are normally only calculated for completely unabated pulses, *i.e.*, those with full duration and amplitude.¹⁹ Equations 3, 4, and 5 show the calculation for the 1-s discharge pulse, 10-s discharge pulse and 5-s regen pulse resistance, respectively, where the relevant time points are identified in Figure 7.

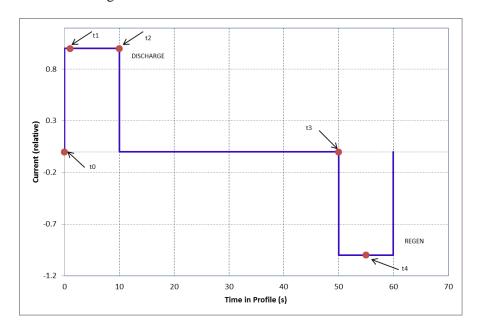
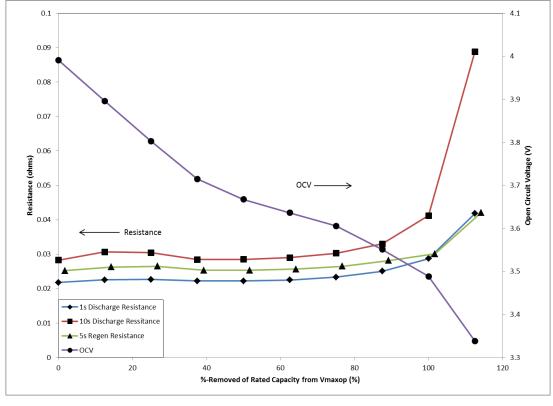


Figure 7. Resistance calculation time points.

19. The HPPC test is required to continue to Vmin₀ (or until the constant current discharge rate cannot be sustained), however some data may be acquired during pulses where current limiting was encountered. Tests conducted indicate that pulse resistances calculated using such data will be somewhat different (probably higher) than the values calculated for pulses where limiting does not occur. While this current limited data may be useful as an indication of device behavior, it should not be used for direct comparisons to the targets.

27


_

1s Discharge Resistance =
$$\frac{\Delta V_{discharge}}{\Delta I_{discharge}} = \left| \frac{V_{t1} - V_{t0}}{I_{t1} - I_{t0}} \right|$$
(3)

10s Discharge Resistance =
$$\frac{\Delta V_{discharge}}{\Delta I_{discharge}} = \left| \frac{V_{t2} - V_{t0}}{I_{t2} - I_{t0}} \right|$$
(4)

5s Regen Resistance =
$$\frac{\Delta V_{discharge}}{\Delta I_{discharge}} = \left| \frac{V_{t4} - V_{t3}}{I_{t4} - I_{t3}} \right|$$
(5)

The discharge and regen resistances can then be plotted at each 10% increment between $Vmax_{op}$ and $Vmin_0$, as shown in Figure 8 for an illustrative set of data. The calculated percentage is based on the cumulative capacity removed divided by the confirmed rated capacity provided by the manufacturer. Note that charge removal from the discharge pulse has to be included when determining the percentage of rated capacity removed for the regen condition, which is why the 5-s regen resistances are slightly shifted to the right when compared to the discharge resistance data. In addition to the resistance values, opencircuit voltage (OCV) can also be plotted at each 10% increment at time point t0 (from Figure 10), which is also shown in Figure 11. The OCV between the 10% increments can then be estimated by straight-line interpolation between the relevant data points or by fitting a curve through the measured data.

Figure 8. Open-circuit voltage and pulse resistances versus capacity removed.

^{20.} In this manual, plotted percentage values always represent the beginnings of their respective discharge or regen pulses.

4.4.3 Pulse Power Capability

The pulse resistance data are then used to calculate the pulse power capability at each 10% increment (defined at beginning of life and fixed throughout life testing), where the discharge power is relative to Vmin_{pulse} and the regen power is relative to Vmax_{pulse} (See Section 3.1.1 and Appendix C regarding allowable values for Vmax_{pulse} and Vmin_{pulse}). The power capability values are used to determine the total available depth-of-discharge and energy swing that can be used (within the pulse voltage limits) for given discharge and regen power levels. Equations 6 and 7 show the pulse power capability calculation for the discharge and regen pulse, respectively. Figure 9 illustrates the resultant Pulse Power Capability curves as a function of the percent of rated capacity removed from Vmax_{op}. The percent capacity removed during the 5 kW discharge should also be indicated on this *x*-axis.

Voltage Limited Discharge Pulse Power Capability = $Vmin_{pulse} \bullet (OCV_{dis} - Vmin_{pulse}) \div R_{discharge}(6)$

Current Limited Discharge Pulse Power Capability =
$$I_{max} \bullet (OCV_{dis} + (R_{dis} \bullet I_{max}))$$
 (7)

Regen Pulse Power Capability =
$$Vmax_{pulse} \bullet (Vmax_{pulse} - OCV_{regen}) \div R_{regen}^{21}$$
 (8)

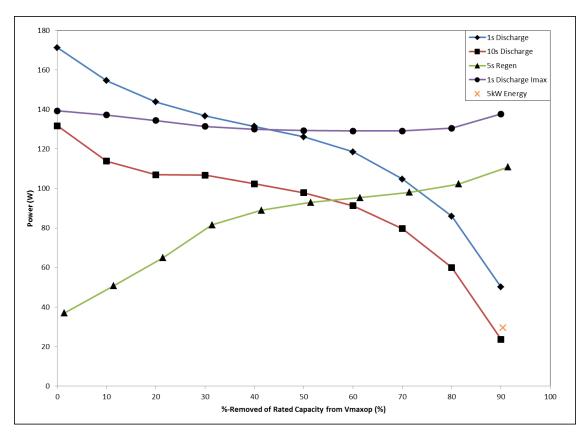


Figure 9. Pulse power capability vs depth of discharge.

^{21.} Note that OCV at the start of each regen pulse must be interpolated from the OCV curve derived from the rest periods before each discharge pulse, accounting for the percent of rated capacity removed by the discharge pulse (*i.e.*, this is not the same OCV used for discharge calculations.) For example, if the discharge pulse starting at 10% of rated capacity removes 3% of the device capacity, the subsequent regen pulse OCV is interpolated starting at 13% of rated capacity removed.

The pulse power capability must also be plotted relative to the cumulative energy removed for successful comparison with the targets. The HPPC test is immediately preceded by the Constant Power Discharge/Charge test (Section 4.3), from which the cumulative energy removed at a BSF-scaled 5 kW rate can be plotted against the calculated capacity removed as shown in Figure 10. The cumulative capacity removed during the constant power discharge to Vmin₀ should be noted on Figure 9 and carried through on figures 11, 12, 13 and 14 and the cumulative energy restored during the constant power charge to Vmax_{op} should also be noted on Figure 11 and carried through the next two figures to help identify the lower available energy limit of the cell. The cumulative capacity removed (expressed as a percentage relative to the rated capacity) from the HPPC test can be matched to the corresponding energy removed at the BSF-scaled 5 kW rate (as indicated in Figure 10) and used to transform Figure 9 into Figure 11, where the pulse power capabilities at the cell level are now plotted as a function of cumulative energy removed. Note that the data in Figure 10 must be generated each time an HPPC test is performed since the energy removed and restored at the constant power rates is a function of discharge capacity will likely change with aging.

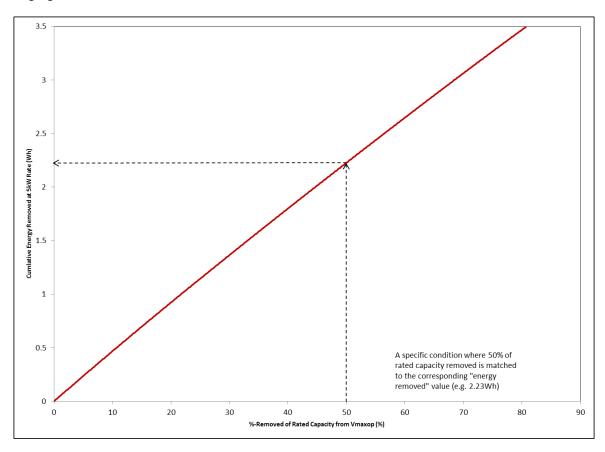


Figure 10. Relationship Between Energy and %-Capacity Removed in a 5 kW Discharge

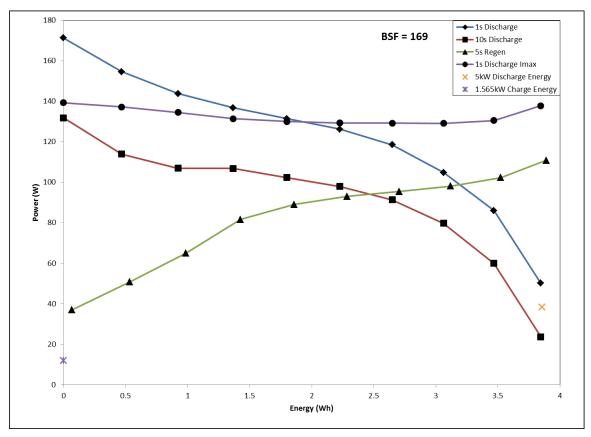
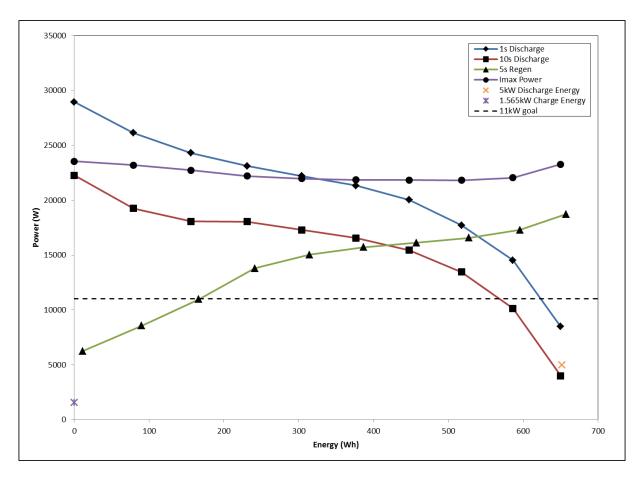



Figure 11. Unscaled HPPC Cell Power Capability vs. Energy Removed.

All calculated cell-level pulse power capability and energy removed values are then scaled by the given Battery Size Factor (BSF). The regen power results can be plotted on the same *y-axis* as the discharge power because the ratio of required regen to discharge power targets are 1:1, *e.g.*, 11-kW regen and 11-kW discharge. Figure 12 illustrates the result of this scaling when applied to Figure 11with an assumed BSF of 169 (to ensure at least a 30% power margin at beginning of life, see Section 4.4.10)²².

^{22.} Note that the Battery Size Factor should be an integer value, however, it can be a non-integer for early-stage development of a device chemistry and with approval from the technical program manager.

Figure 12. HPPC Power vs. HPPC-Current Discharge Energy Scaled by the Battery Size Factor.

4.4.4 Useable and Available Energies

The 48 Volt HEV targets include a 1-s Discharge Pulse power target, 10-s Discharge Pulse power target, 5-s Regen Pulse power target, an Available Energy for cycling target, and an Accessory Load target, all of which must be simultaneously satisfied. The Peak Regen target is included in the energy calculation with the Peak Discharge Pulse power. The USABC has decided for this application that the energy can be regen limited (*i.e.*, unable to accept complete regen at the upper end of the SOC range). This regen limit may also be limited by the energy that can be returned at the constant power charge rate as determined by the Constant Power Charge/Discharge test performed prior to the HPPC pulses. The Charge Targethas been chosen to be at Vmax_{op} and is reached at the constant power charge rate.

It is not necessary that the discharge and regen power curves will crossover each other. If such is true, the energy assessment is based on the discharge pulse power curve. The Useable Energy (UE) curve is generated by plotting the total available discharge energy at the BSF-scaled 5 kW rate between either the max regen power curve or the energy that could not be restored to the battery at the constant power charge, and the Pulse Power Discharge curve or the amount of energy discharged during the 5 kW constant power discharge to Vmin₀ (*i.e.*, see Figure 13). It can therefore be represented by a set of horizontal lines originating at the max regen line or top of charge point and terminating at the point of intersection with the discharge curve or max discharge point. The point of intersection is defined as $E_{Discharge}$. Available Energy (AE) is the total available discharge energy at the BSF-scaled 5 kW rate between either the max regen line or top of charge point and the Pulse Power Discharge curve or max discharge point at the BSF-5kW evaluated at the Peak Discharge Pulse Power target (*i.e.*, Available

Energy is the point on the Useable Energy curve at the given target power defined in Table 1). In the case where the last point on the discharge curve exceeds the 11 kW target, but not the 5 kW discharge point, then the Available Energy is defined as the energy removed to the 5kW discharge point. Equation (9) defines UE, where E_{Discharge} corresponds to the energy at a given power level along the discharge curve.

$$UE = \{E_{Discharge}\}_{P}$$
 (9)

In the case where Equation (9) is evaluated at the discharge power target of 11 kW, UE becomes the available energy (AE) and this value is reported in the Gap Analysis as the "Total Available Energy" as defined in Appendix B. Figure 13 illustrates the Power vs. Energy curve with a numerical energy value identified at 11 kW(1-s) and 9kW (10-s). For this given dataset, the 1s discharge pulse curve crosses the 11 kW goal line, therefore the AE is equal to the energy of the discharge curve evaluated at 11kW.. The same techniquie applies to the 10s discharge curve and the 9kW goal line.

UE (at power target) = AE = 434.6 Wh

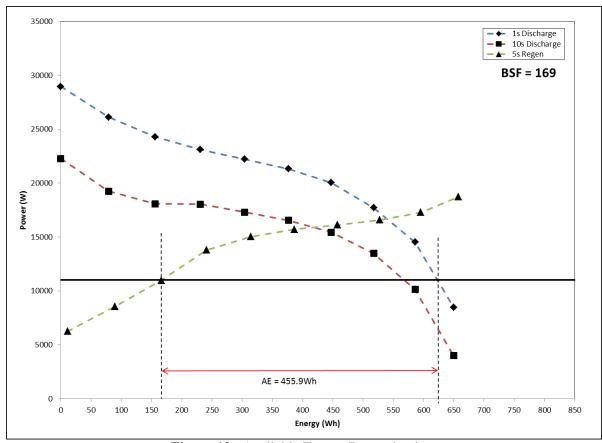


Figure 13. Available Energy Determination.

4.4.5 Available Energy Margins

The Available Energy at the 11 kW discharge pulse power target reduces with aging as the Useable Energy curve shifts due to degradation in the power capability during calendar and/or cycle life. Once the Available Energy meets or falls below the target, the test article has reached *end-of-life*, unless some other target criterion has already failed to be met (for example, the self-discharge rate might become unacceptably high). The energy margin is defined as the difference between the calculated Available

Energy at a given point during calendar- or cycle-life aging and the corresponding target. The available energy margin is calculated as defined in Equation 10 and illustrated in Figure 14, where AE_{Total Target} is the specified available energy target provided in Table 1 (*i.e.*, 313 Wh). Thus, for a given AE of 455.9 Wh, the resulting Available Energy margin is 142.9 Wh. Figure 14 also shows the shift in the Peak Discharge Pulse Power at beginning-of-life (BOL) and at end-of-life (EOL) due to aging and the corresponding effect on energy margins, which are zero (by definition) at end-of-life.²³

$$AE_{Margin} = AE - AE_{Total\ Target} = 455.9\ Wh - 313\ Wh = 142.9\ Wh$$
 (10)

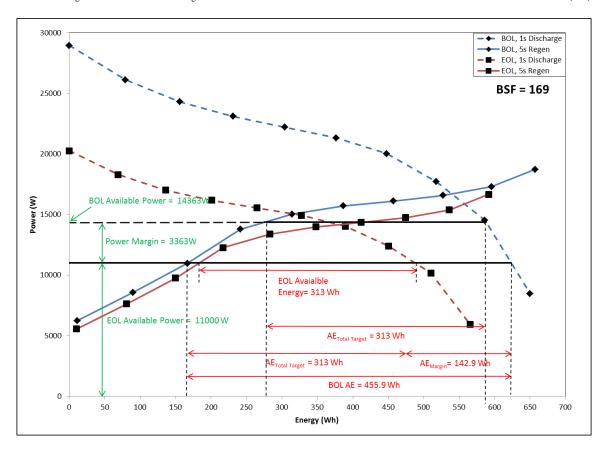


Figure 14. Available Energy and Power Margins Over Life.

4.4.6 Available Power

Available Power is the discharge power capability level at the point where $E_{Discharge}$ minus the energy not restored during the constant power charge is exactly equal to the total Available Energy target, AE_{Total} E_{Target} , where $AE_{Total \, Target}$ is 313 Wh for 48 V HEV applications. This is reported in the Gap Analysis as the Discharge Pulse capability (see Appendix B). The BOL and EOL Available Power are illustrated in Figure 14 above. At BOL, the Available Power was calculated to be 14.4kW and (in this example case) it is precisely equal to the discharge target power of 11 kW at EOL. Power Margin (also identified in

^{23.} These end-of-life data are theoretical; in practice, test data are seldom available *exactly* at the point in life where power and energy margins are zero because reference tests are performed only at periodic intervals. Thus this point normally occurs between two sets of reference tests. See Section 4.9 regarding the implications of this behavior on reported life.

Figure 14) is the difference in discharge power capability between the Available Power at a given point in time during life and the Peak Discharge Pulse Power target of 11 kW.

The Available Power and Available Energy represent complementary aspects in the performance of a test article at a given point in time during life aging. These values can be graphically represented in a Useable Energy vs. Power curve as shown in Figure 15. The corresponding targets of the 48V HEV application are also identified with solid black lines to clearly identify the location of each relevant parameter on the useable energy curves that is reported in the Gap Analysis (see Appendix B).

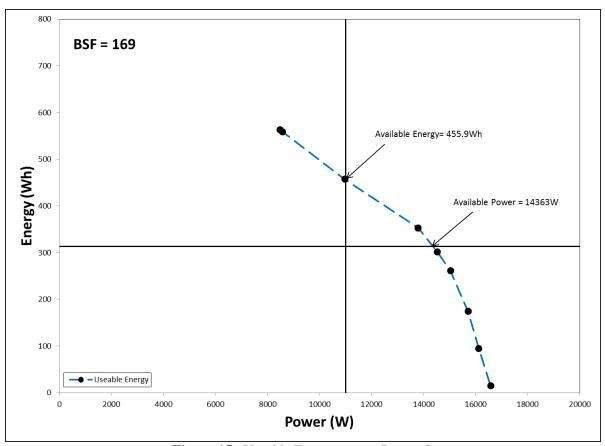


Figure 15. Useable Energy versus Power Curve.

4.4.7 Power and Energy Fade

For devices subjected to life testing, the change in Available Power and Available Energy from the beginning-of-life values (measured just prior to the start of life testing) to some later point in time are to be reported periodically as Power Fade and Energy Fade, both expressed as percentages of the original (BOL) values as shown in Equations (11) and (12).

Power Fade (%) =
$$100 \times \left(1 - \frac{\text{Available Power}_{t_1}}{\text{Available Power}_{t_0}}\right)$$
 (11)

Energy Fade (%) =
$$100 \times \left(1 - \frac{\text{Available Energy}_{t1}}{\text{Available Energy}_{t0}}\right)$$
 (12)

In both cases, t0 refers to the Reference Performance Test conducted immediately prior to the start of life aging (i.e., RPT0) and t1 refers to the time of the later RPT where power and energy fade are to be determined.

4.4.8 Minimum and Maximum Capacities Removed and Cold Crank Condition

Some characterization tests (*e.g.*, the energy verification test in Section 3.4.3) require knowledge of the minimum and maximum capacities removed at which the corresponding power targets are exactly met. A BSF-scaled representation of Figure 9 is shown in Figure 16, where the power capability curves are plotted as a function of the percent of rated capacity removed from Vmax_{op} instead of cumulative energy removed. As shown, the maximum capacity removed is determined from E_{Discharge} at the Peak Discharge Pulse Power target (*e.g.*, 11 kW), which is 65.5% of the rated capacity removed (*e.g.*, for a 2 Ah cell, 1.31 Ah are removed). Likewise, the minimum capacity removed is, by definition at 0% of rated capacity removed (*i.e.*, Vmax_{op}). Note that the locations for these conditions are typically fixed at BOL but the discharge power curve shifts as the test article ages. The values for the minimum and maximum capacities removed can be updated at the discretion of the technical program manager.

In addition to the maximum and minimum values, the capacity removed prior to the cold crank test (Section 3.6) can also be established from these data. Starting from full charge relative to Vmax_{op}, remove the amount of rated capacity equivalent to the Total Available Energy Target at the BSF-scaled 5 kW rate (*e.g.*, 313 Wh)²⁴. This is accomplished using the methodology discussed in Section 4.4.3 and Figure 10. The resulting capacity removed should be somewhere between the minimum and maximum capacities, as illustrated in Figure 16. In this example case, the cold crank test should be performed at 45.1% of rated capacity removed (*e.g.*, for a 2 Ah cell, 0.902 Ah are removed). Note that when the cold crank test condition exceeds the maximum capacity removed during the latest 5 kW discharge, the test article can no longer successfully perform the cold crank test and has reached end of life.

36

-

^{24.} Note that this is referred to as minimum state-of-charge (min SOC) condition in the targets in Table 1.

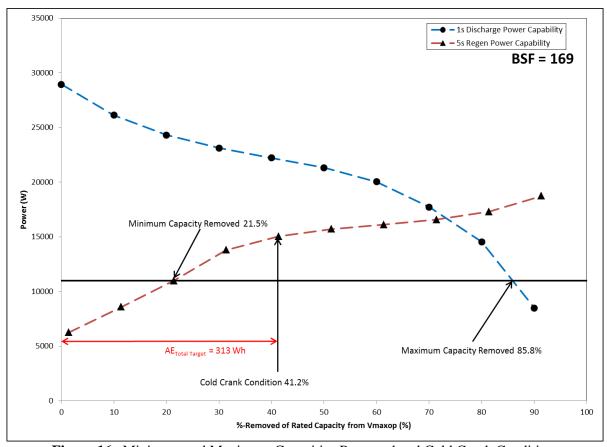


Figure 16. Minimum and Maximum Capacities Removed and Cold Crank Condition.

4.4.9 Other Laboratory Cell Performance Characteristics

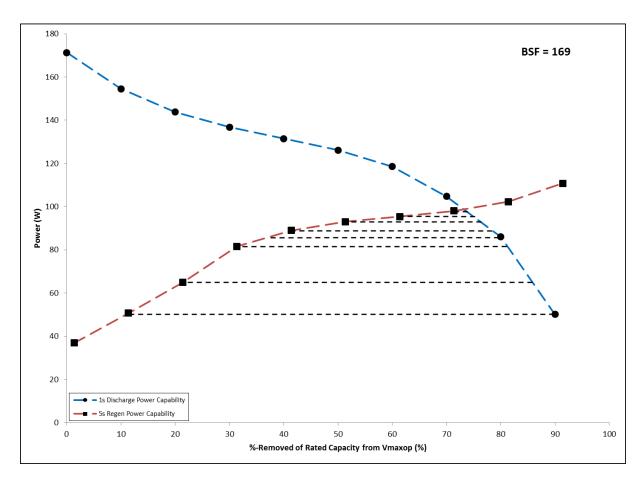
Other laboratory cell performance characteristics can be calculated from the HPPC data to permit scale-up calculations to full-size cells and/or observe unique features in the specific cell chemistry. These include some or all of the following:

- Voltage response time constant estimates for discharge, regen, and rest periods derived from the current-driven HPPC Test data
- Ohmic and polarization resistances derived from lumped parameter equivalent circuit models
- Cell capacity and energy in area-specific, gravimetric, and volumetric units (mAh/cm², mWh/cm², Ah/kg, Wh/kg, Ah/liter, Wh/liter)
- Cell area-specific impedance in ohms-cm² for discharge and for regen from HPPC data for 48 Volt Mild Hybrid Electric Vehicle applications. (Note: this requires specific knowledge of the active surface area of the cells).

The data acquired from HPPC cell testing are ultimately used for modeling cell characteristics and for the selection and design of full-size module and battery pack characteristics.

4.4.10 Determining Battery Size Factor When Not Supplied By Manufacturer

If the device manufacturer is unable to supply a BSF, or if the provided BSF needs to be verified prior to life testing, an initial HPPC test can be performed to establish the BSF. The discharge current between pulses (*i.e.*, for the 10% increments) is at the C₁-rate based on the manufacturer's rated capacity and the magnitude of the discharge pulse is based on a 5C₁ current. Additionally, the HPPC test is preceded by a constant current discharge at a C₁-rate to establish the relationship between capacity removed and cumulative energy removed (Figure 10). Once a BSF is determined using the methodology described herein, it should be validated by repeating the HPPC test preceded by the BSF-scaled Content Power Discharge/Charge test. If the results do not provide sufficient energy or power margin, a new BSF will need to be determined and validated. The BSF should typically provide at least a 30% power margin at BOL, though other ranges could be specified by a manufacturer if needed with approval from the technical program manager. If the validation testing supports the recommended BSF, then that value should be used for all future life testing of the test articles. A single typical or average value can be used for testing a group of identical devices.


First, the unscaled power vs. energy curve is used to find the total Useable Energy of the individual test article. Figure 17 shows the illustrative power vs. energy curve (unscaled). As defined in Section 4.4.4, the total Useable Energy is the difference between $V_{max_{op}}$ and $E_{Discharge}$ at various power levels as indicated by the horizontal lines. The resulting Useable Energy curve is shown in Figure 18.

Several steps are required to establish the BSF.²⁵ Since a 48V HEV system has strictly defined voltage limits defined in Table 1 it is nessecary to determine the number of series connected cells as this will have an affect on the final BSF. The BSF calculation begins with determining the number of cells that will need to be put in series to meet the 52V Maximum Operating Pulse Voltage requirement. For example, if a cell has a 10 second maximum pulse voltage ($Vmax_{pulse}$) of 4.2V, then the number of series connected cells would be 52/4.2 = 12.38 cells in series. The value should be rounded up to the next full integer, in this case 13. It should be verified that both the Minimum Operating Pulse Voltage of 38V, and the Minimum Voltage During Cold Crank of 26V are meet. For this example, $13*Vmin_{pulse}$ should be less than or equal to 38V and $13*Vmin_{Low T}$ should be less than or equal to 26V. The final BSF should be a multiple of the number of series connected cells.

38

-

^{25.} This process is most accurately done using a spreadsheet with a macro. However, it is described graphically here for an understanding of the calculation method, and the graphical result may be accurate enough if done carefully.

Figure 17. Finding the Useable Energy Using Device-Level Results.

The method to calculate BSF based on power is the multistep process that follows. First, the unscaled power vs. energy curve is used to find the total Useable Energy of the individual test article. Figure 17 shows the illustrative power vs. energy curve (unscaled). As defined in Section 4.4.4, the total Useable Energy is the difference between $V_{max_{op}}$ and $E_{Discharge}$ at various power levels as indicated by the horizontal lines. The resulting Useable Energy curve is shown in Figure 18.

Second, on the useable energy curve, draw a line from the origin having a slope equal to the ratio of the Total Available Energy target (i.e., 313 Wh) to the Discharge Pulse power target (i.e., 11 kW). Figure 18 shows the Useable Energy curves and goal ratios for both the 1s - 11kW goal and the 10s - 9kW goal. BSF calculations should be made for both goals since the resulting BSF may be different. This ratio is then multiplied by a factor of 1/1.3 (0.77) to provide a 30% power margin. For the 48 V HEV application, the resulting slope of this line is 0.022; this is shown in Figure 18 with the solid green line. Next, determine the point at which this line intersects with the useable energy curve; this corresponds to 2.67 Wh of energy and 122.1 W of power in Figure 18. A scaling factor is then calculated by dividing the numerator of the slope (i.e., 313 Wh) with the energy at the intersection point; this corresponds to 313 Wh / 2.67 Wh = 117.1. Note that the same value can be determined by dividing the Discharge Pulse power target with the power at the intersection point (11000 W x 1.3 / 122.1 W = 117.1. For testing purposes, this BSF should be rounded to the next highest integer (i.e., BSF = 118), but it can be a non-integer for early stage development of a device chemistry with concurrence from the technical program manager. As discussed above, the BSF needs to be a multiple of the number of series connected cells, in this example a multiple of 13 The BSF should be rounded up to the next multiple of the number of series cells, 130. The Constant Power Discharge/Charge test and the HPPC test should be ran again using this BSF to scale

the values where appropriate. The BSF calculation should be repeated to adjust the BSF to a final value. If the Useable Energy curve does not intersect with the goals ratio slope, draw a horizontal line from the maximum Useable Energy curve value to the *y-axis* to identify the intersection point of the goals ratio slope. If this step is necessary, then the test article should be scaled *versus* the energy of the horizontal line or some fraction thereof. The technical program manager should be notified.

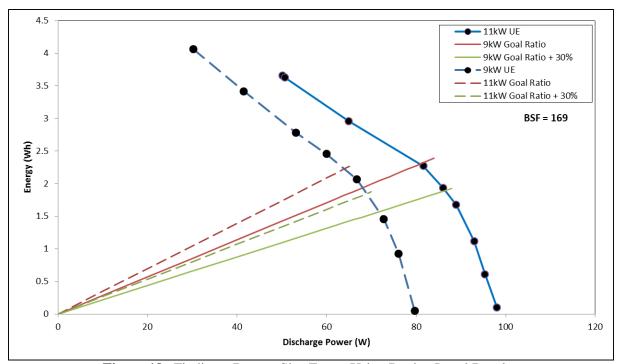


Figure 18. Finding a Battery Size Factor Using Device-Level Results.

4.5 Self-Discharge Test

Self-discharge rate is determined over a fixed period (nominally 7 days) at one or more intermediate test conditions (nominally after removing a 313 Wh). The difference between the energy (watt-hours) measured prior to the test and after the test is considered to be the energy loss reflecting self-discharge during the stand period. This energy loss is computed as the difference between the pretest $C_1/1$ energy and the sum of the energies in the partial $C_1/1$ discharges before and after the stand period. This value is then divided by the length of the stand period in days and multiplied by the appropriate Battery Size Factor, as shown in Equation (13).

Self Discharge =
$$\frac{Wh_{C/1 \text{ before test}} - (Wh_{\text{part }1} + Wh_{\text{part }2})}{\text{Stand Time in Days}} \times BSF$$
 (13)

The result of this calculation is reported for comparison with the USABC target of no more than 1 Wh per day. (Note: The self-discharge test for a module with electronic cell balancing circuit etc. should be reported to show the cell self-discharge and any parasitic drain on the module.)

4.6 Cold Cranking Test

The fundamental result of the Cold Cranking Test is that the device must maintain voltage at or above 26.0 V while simultaneously meeting both the 6 kW and 4 kW portions of the pulse profile for all three cranks at -30°C. The actual power achieved does not necessarily represent the maximum power capability; it merely shows whether the device was able to meet the target. (Some batteries may be capable of higher power than this.) The power capability for the test article is to be multiplied by the Battery Size Factor and compared to the corresponding USABC targets. The maximum power capability may be calculated in a manner analogous to the normal pulse-power capability results, as follows:

- 1. Calculate discharge pulse resistance values using the voltage and current values at three pairs of time points [(t0, t1), (t0,t2), (t3, t4), (t3, t5), (t6, t7) and (t6, t8), illustrated in Figure 19, using the same $\Delta V/\Delta I$ calculation (Equation [3]) used for discharge resistance in Section 4.4.2.
- 2. Calculate the discharge pulse power capability for each of the Cold Cranking Test pulses using Equation (6) as in Section 4.4.3. The current limitations described in the footnote to this section must also be observed here. If the manufacturer specifies a minimum discharge voltage specifically for cold cranking, this voltage must be used for the calculation in place of the normal Minimum Discharge Voltage.
- 3. Multiply each of these pulse power capability values by the Battery Size Factor and report the resulting power values for comparison with the USABC targets of 6 kW and 4 kW.

Figure 19. Cold Cranking Test resistance calculation points.

4.7 Thermal Performance Tests

Measured capacity at the 5 kW rate is reported over the range of temperatures at which the Capacity Test is performed. Results of HPPC testing at temperatures other than nominal are reported in the same formats defined in Section 4.4, except that the test temperature must accompany all data and graphs. The results of the thermal performance test will show the available energy at each temperature.

4.7.1 Survival Temperature Test

The survival temperature test is designed to evaluate degradation at the extreme upper and lower temperatures. The result of this test is reported for comparison with the USABC target of no more than 5% capacity or power loss after the upper and lower temperature test.

4.8 Energy Efficiency Test

Round trip energy efficiency is calculated from an integral number of test profiles of the Efficiency Test. The preferred approach is to use a group of 10 or more consecutive test profiles within the 100 profiles that were performed, both to reduce the impact of small profile-to-profile variations and to minimize numerical round-off effects. The calculation is performed as follows:

- 1. From an examination of the Efficiency Test data, choose a group of consecutive test profiles where the cell average SOC (as implied by temperature and peak voltage behavior) is stable, normally at the end of the cycling period. The amount of time to reach this condition varies but will commonly be an hour or more after the start of cycling.
- 2. Integrate both the current and power for the discharge and regen intervals of these profiles (separately). Verify that the discharge ampere-hours and the regen ampere-hours are equal (within 1% or less). If this condition is not satisfied, either (a) cycling conditions were not sufficiently stable or (b) the cell is not 100% coulombically efficient at the cycling conditions. In the first case, the test must be repeated using additional test profiles. In the second case, if a review of the data indicates that voltage and temperature conditions were stable, the results are reported but the charge imbalance must be noted.
- 3. Calculate round-trip efficiency as the ratio of discharge energy removed to regen energy returned during at least one of the profiles, expressed in percent as shown in Equation (14).

Round-trip efficiency =
$$\frac{\text{watt} \cdot \text{hours (discharge)}}{\text{watt} \cdot \text{hours (regen)}} \times 100 \text{ (\%)}$$
 (14)

Round-trip efficiency may also be calculated if desired over a longer period of time (*e.g.*, during life cycling) using any integral number of repeated test profiles for which the state of charge is stable, *e.g.*, an entire block of several thousand profiles may be used instead of a small group.²⁶ The efficiency is calculated after it is verified that the profile was charge-neutral.

^{26.} The Efficiency Test and Cycle life Test profiles are identical, so Life Test data are directly useable for efficiency calculations if cycling is done at a constant SOC.

4.9 Operating Set Point Stability Test

No results are reported specifically from this test. The current, voltage, and residual capacity data are reviewed to determine that state of charge and other conditions are stable (and at their target values) for continuous cycle life testing, but otherwise this test is generally treated as part of cycle life testing.

4.10 Cycle Life Tests

For the selected life test profile, the cumulative number of test profiles executed prior to the most recent Reference Performance Tests is reported, along with any performance changes measured by these Reference Performance Tests. If testing is terminated due to the inability of the cell to perform the programmed test profile within the voltage limits or some other end-of-test condition, this is reported. However, the number of profiles performed is not necessarily the cycle life and should not be reported as such.²⁷ Detailed results of the reference tests are reported over life as described under these specific tests, including the magnitude of adjustments made (if any) due to the measured temperatures being above or below the nominal temperature. In addition, degradation of capacity, pulse power capability, Available Energy, and Cold Cranking Power capability as a function of life (*i.e.*, number of test profiles performed) should be reported graphically.

The value of cycle life to be reported for a device subjected to cycle life testing is defined as the number of test profiles performed before end of life is reached.²⁸ In general an end of life condition is reached when the device is no longer able to meet the USABC targets (regardless of when testing is actually terminated). The ability to meet the targets is evaluated based on the periodic Reference Performance Tests, particularly the HPPC test results. When the power and energy performance of the device (scaled using the Battery Size Factor) degrades to the point that there is no power or energy margin (*i.e.*, Available Energy is less than the target value at the target power), the device has reached end of life. In addition, the inability to meet any of the other USABC technical targets (*e.g.*, the cold cranking power, efficiency or self-discharge target) also constitutes end of life. The basis for the reported cycle life value (*i.e.*, the limiting target condition) should also be reported. ²⁹ If the cycle life based on power and energy performance is very near the target, the end of life point may need to be interpolated based on the change in HPPC performance from the previous reference test.

4.11 Calendar Life Test

The raw data from calendar life testing are the periodic reference performance parameter measurements for all the batteries under test. The objective of this data analysis is to estimate battery calendar life under actual usage in a specified customer environment. Typically, the environmental specification will include

^{27.} If the cell can't do the profile, that is the end of life. However, the cell may fail the performance requirements in the middle of the cycle life test, but it won't be caught until the RPT.

^{28.} If the RPT shows that the device has past the end of life, then the cycle life reported is from the prior RPT.

^{29.} Efficiency and self-discharge are not necessarily measured at regular intervals during life testing, so the point during life cycling where such an end of life condition is reached cannot always be determined with high accuracy. Typically the test results showing that the targets are not met would be reported, without attempting to interpolate an end of life point using two test results widely separated in time.

a cumulative distribution of expected battery temperature over its 15-year life in, for example, the 90^{th} percentile climate among the target vehicle market regions. These temperatures will vary, and will generally be substantially lower than the elevated temperatures used for (accelerated) calendar life testing. Note that for most (> 90%) of its 15-year life, the battery will typically be in a non-operating, vehicle-parked state.

Predicting battery life is a desired outcome of testing. There are various approaches to constructing a battery life model. One is theoretical, using various physical and chemical processes that may occur in the battery, which degrade its performance. A second is fitting a curve to the data. The following discussion is limited to the latter approach and is meant to illustrate a general approach to construct a reasonable, data-based model. For a more advanced treatment of life test results, refer to Battery Life Estimator Manual (Reference 7).

4.12 Reference Performance Tests

Results to be reported from the periodic Reference Performance Tests are defined in the previous sections on Cycle Life and Calendar Life Tests.

4.13 Module Controls Verification Tests

Standard tests are not defined in this manual for module control behavior, so analysis and reporting requirements for such tests must be detailed in device-specific test plans, as needed.

4.14 System-Level Testing

In general, the analysis and reporting of test results for complete battery systems is conducted similarly to comparable cell tests, with the exception that the BSF will be 1 by definition. Additional reporting requirements (*e.g.*, detailed cell or module performance) should be specified in a device-specific test plan that accounts for the specific design features of such a system.

Test procedures and the associated reporting requirements are not defined in this manual for system-level thermal management load testing.

5. REFERENCES

- 1. Battery Test Manual for Electric Vehicles, Revision 3, INL/EXT-15-34184, June 2015.
- 2. PNGV Battery Test Manual, Revision 3, DOE/ID-10597, February 2001.
- 3. FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles, DOE/ID-11069, October 2003
- 4. Battery Test Manual for Plug-In Hybrid Electric Vehicles, INL/EXT-14-32849, Rev. 3, September 2014
- 5. Battery Test Manual for 12 V Start/Stop Vehicles, INL/EXT-12-26503, Rev. 1, May 2015
- 6. Battery Technology Life Verification Test Manual, INL/EXT-12-27920, Rev. 1, December 2012
- 7. Battery Calendar Life Estimator Manual, INL-EXT 08-15136, Rev. 1, October 2012

APPENDIX A - SAMPLE TEST PLAN

This appendix provides a sample test plan based on the test requirements for this 48 V HEV Manual. It is not intended to be a thorough representation, but an example format that can be useful in developing device-specific test plans for various deliverables.

VEHICLE TECHNOLOGIES OFFICE 48 V MILD HYBRID ELECTRIC VEHICLE TEST PLAN FOR TBD DEVICES

1.0 Purpose and Applicability

The intent of the tests described in this test plan is to characterize the performance of TBD articles supplied by TBD for the TBD Battery mode. This testing will benchmark the performance capability of the articles relative to the TBD targets and is under the oversight of the Department of Energy, Vehicle Technology Office. TBD articles were received from TBD and TBD of them will be subjected to testing under this plan. The articles will be subjected to the performance test procedures defined for the 48 V HEV Program and as outlined in Section 7.0.

2.0 References

2.1 Battery Test Manual for 48 Volt Mild Hybrid Electric Vehicles, INL/EXT-15-36567, Rev. 0, August 2015

3.0 Equipment

- 3.1 All testing is to be performed on test channels with current and voltage capabilities adequate for the specific test procedures to be performed.
- Except where specifically noted otherwise, all tests will be performed within a temperature chamber capable of controlling the chamber temperature to within ± 3 °C.

4.0 Prerequisites and Pre-Test Preparation

- 4.1 Actual weights and open circuit voltages of the articles as delivered shall be recorded.
- 4.2 If possible, 1 kHz impedance measurements shall be made prior to the start of testing with the articles as received.

5.0 Cell Ratings, Test Limitations and Other Test Information

5.1 Ratings

Rated Capacity: TBD A-h ($C_1/1$ rate) Application: TBD Battery Battery Size Factor: TBD articles

HPPC Pulse Power Voltage Calculation Ranges:

 $\begin{array}{cc} Vmin_0 & TBD\ V \\ Vmax_{op} & TBD\ V \\ I_{HPPC} & TBD\ A \end{array}$

Chemistry: TBD

5.2 Temperature Ratings

Operating Temperature Range:	TBD°C to TBD°C
Discharge Temperature Range:	TBD°C to TBD°C
Charge Temperature Range:	TBD°C to TBD°C
Storage Temperature Range:	TBD°C to TBD°C
Cold Cranking Temperature	TBD°C to TBD°C

5.3 Nominal Values

Nominal Capacity:	TBD A-h
Nominal Weight:	TBD kg
Nominal Volume:	TBD L

5.4 Discharge Limits

X 4	Discharge	X 7 1,
Minimiim	Luccharga	VALITAGA
	LINCHALSE	v unasc

Continuous rates $\leq C_1/1$ rate (Vmin ₀):	TBD V
≤1 s pulse (Vmin _{pulse}):	TBD V
≤ 1 s pulse and temp $\leq 0^{\circ}$ C (Vmin _{LowT}):	TBD V

Maximum Discharge Current:

Continuous rates $\leq C_1/1$ rate:	TBD A
≤1 second pulse:	TBD A

5.5 Charge and Regen Limits

Maximum Charge and Regen Voltage

Continuous rates $\leq C_1/1$ rate (Vmax ₁₀₀):	TBD V
Continuous rates $\leq C_1/1$ rate (Vmax _{op}):	TBD V
≤10 second pulse (Vmax _{pulse}):	TBD V

Maximum Charge and Regen Current:

Continuous $\leq C_1/1$ rate:	TBD A
≤10 second pulse:	TBD A

5.6 Other Test Info:

Charge Procedure: TBD

5.7 End-of-Testing Criterion:

- 1. Completion of a number of properly scaled life cycle test profiles adequate to meet the 48V Mild Hybrid Electric Vehicle life cycle target (as appropriate for the technology) or scheduled testing; or
- 2. Inability to perform the life cycle test profile at the programmed values at the required test condition without exceeding the voltage limits; or
- 3. Inability to give valid data from the HPPC Reference Performance Test; or
- 4. Inability to meet the 48V Mild Hybrid Electric Vehicle power and energy targets or

5. When directed by the technical program manager.

6.0 Safety Concerns and Precautions

In general the safety issues with these articles are similar to those encountered previously with other similar technology tested for the Vehicle Technologies Office. Care is warranted due to the high power capability of these articles, as noted below.

6.1 Article Handling

TBD

6.2 Other Safety Precautions

· TBD

7.0 Tests to be Performed Under this Test Plan

The articles to be tested under this test plan will be subjected to the performance test sequence in Table 1. The percent of rated capacity removed is to be established by discharging at a rated HPPC current for a fixed period of time from full charge to $Vmax_{op}$. Unless otherwise specified, the test temperature shall be 30 ± 3 °C. These Articles will be tested in a temperature chamber.

7.1 Performance Testing

Table 1. Performance Test Sequence

		No.
Item	Sequence of Initial Performance Tests for the Articles	Iterations
1	Capacity Test (See Reference 2.1, Section 3.2)	*
	Conduct this test on TBD articles at a rated $C_1/1$ constant discharge current.	
	Note: Test is to be terminated at manufacturer-specified cutoff voltage, NOT rated capacity	
	* Repeat discharge until measured capacity is stable within 2% for 3 successive discharges (maximum 10 discharges).	
2	Constant Power Discharge/Charge Test (Reference 2.1, Section 3.3)	1
	Conduct this test on TBD articles at a BSF-scaled 5 kW discharge rate.	
	Note: Test is to be terminated at manufacturer-specified cutoff voltage, NOT rated capacity	
3	Hybrid Pulse Power Characterization Test (Reference 2.1, Section 3.4)	1

	Perform the Low test on TBD articles. The Low Current Test is performed at a peak discharge current of 5*C ₁ rate. For all Articles, the Constant Power Discharge/Charge test results will be included in the same data file as the HPPC test for calculation purposes.	
4	Self-Discharge Test (Reference 2.1, Sections 3.5)	1
	Conduct this test on TBD articles for a 7-day stand interval at TBD condition. This value is consistent with the calendar/cycle life parameters.	
	Note: If the final measured capacity is significantly less than the pre-test value, contact the technical program manager prior to beginning life testing.	
5	Cold Cranking Test (Reference 2.1, Sections 3.6)	1
	Conduct this test on TBD articles at -30°C. For this test plan, the cold soak time at -30°C prior to pulse testing shall be at least TBD hours.	
6	Thermal Performance Test (Reference 2.1, Sections 3.7)	1
	Perform a 5 kW Constant-Power Discharge Test and the HPPC Test (see Items 2 and 3 above) at 0, -10, -20, -30, and 52°C on TBD articles.	
	The sequence of tests is as follows: a) 0°C, b) -10°C, c) -20°C test only if the 0 and -10°C tests meet or exceed the performance goals, d) -30°C test only if the -20°C tests meet or exceed the performance goals, e) 52°C. Use the cold crank voltage limit (<i>i.e.</i> , Vmin _{LowT}) at 0°C and below.	
	Recharging for these tests is to be done at 30°C ambient temperature. A soak period of nominally TBD hours or longer is required at each temperature for all tests.	
7	Reference Performance Tests (Reference 2.1, Section 3.13) Perform the 5 kW Constant Power Discharge/Charge Test and the HPPC Test as described above. These tests should be included in the same data file for calculation purposes. Also include a cold crank at BOL, 50% cycle life (37,500 cycles complete), and EOL.	*
	At the completion of life testing, perform the required Reference Performance Test as above.	
	* During life testing, repeat the required Reference Performance Test every 32 days.	

8	Cycle Life Test (Reference 2.1, Sections 3.10)	
	As directed.	
9	Calendar Life Test (Reference 2.1, Sections 3.11)	
	As directed.	

8.0 Measurement and Reporting Requirements

8.1 Measurements

TBD

8.2 Data Recording Intervals

TBD

8.3 Data Access

TBD

9.0 Anticipated Results

The purpose of this testing is to compare the performance of the technology against the $48\ V$ Mild Hybrid Electric Vehicle targets.

9.1 Testing Deliverables

Test data and results will be generated as specified in the performance and life cycle test procedures in Reference 2.1. Quarterly progress summary information will be provided to the technical program manager.

10.0 Post-Test Examination, Analysis, and Disposition

TBD

11.0 <u>Contact Persons</u>

TBD

APPENDIX B - GAP ANALYSIS REPORTING

This appendix summarizes the key concepts and associated nomenclature that are used in Sections 3 and 4 of this manual, and is followed by a numeric example showing how the information obtained from the HPPC tests translates to the entries that are reported in the Gap Analysis. The Gap Analysis is the standard communication tool for USABC programs and is used to measure progress at regular intervals. It also supports direct comparisons between programs and technologies and as such it is critical that data interpretation and reporting are performed in a consistent manner across developers. This illustration is not intended to be a comprehensive description of a Gap Analysis, but an example based on the 10-s discharge power data and the energy data from an HPPC test.

Figure B.1 shows a BSF-scaled Power vs. Energy curve using the same example as in Section 4.0 based on the 48 V HEV Application. The *x-axis* represents the cumulative energy removed at the 5 kW rate starting from the upper end of the operating window which is defined as Vmax_{op}. The *y-axis* represents the calculated 10-s Discharge Pulse power at each 10% increment between Vmax_{op} and Vmin₀. The energy target, AE_{Total Target} (313 Wh) is defined in Table 1 and labeled in Figure B1 with the blue arrow. The measured Available Energy for this dataset (434.6 Wh) is identified by the red arrow. These values are reported in a Gap Analysis as shown in Table B.1 and tracked as a function of age against the EOL targets. The corresponding energy margin (AE_{Margin}) is also shown in Figure B.1 for reference.

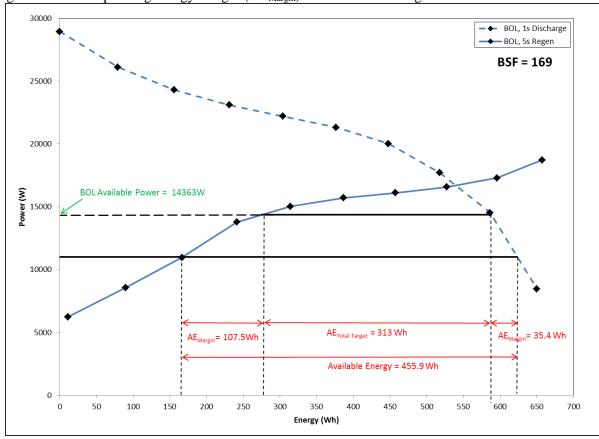


Figure B.1. Gap Analysis – Energy

Alternatively, as described in Section 4.4.6, the power vs. energy curves can be translated into Useable Energy curves for evaluation. This approach requires generating a set of Useable Energies in Figure B.1

between $Vmax_{op}$ (i.e., 0 Wh) and $E_{Discharge}$ on the *x-axis* and plotted as a function of the discharge power as shown in Figure 16 and reproduced in Figure B.2. From these curves, the Available Energy and the Discharge Pulse power values can be identified and reported in the Gap Analysis.

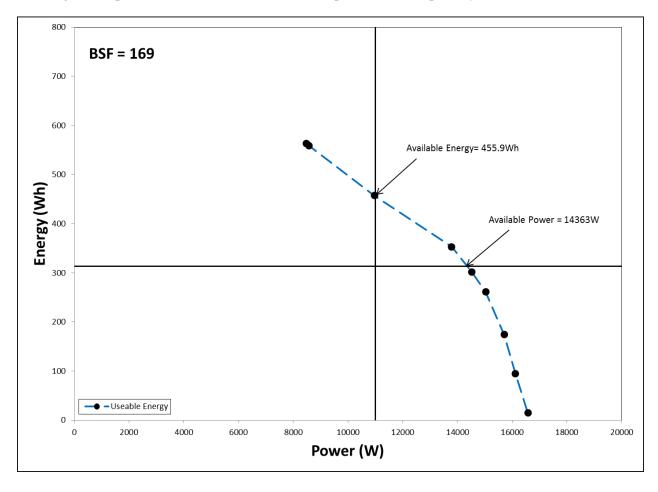


Figure B.2. Useable Energy Versus Power Curve

Based on these illustrative data, the Gap Analysis is shown in Table B.1. The Gap Analysis typically will include columns having the characteristics, units, targets for the given application, the data for a representative cell at beginning of life (often referred to as RPT0) and data for the same representative cell at its given point in life during calendar or cycle-life aging. If the test article demonstrates that a value exceeds the given target, the value is highlighted in green as shown in Table B.1. If the test article shows a value that is less than the target, but reasonably close (*i.e.*, within 15% of the target), the value in the Gap Analysis is then highlighted in yellow. Otherwise it is highlighted in red. The column with the most recent data is typically highlighted while earlier data (*i.e.*, RPT0) is not highlighted. The Gap Analysis should be updated after each RPT and reported to the technical program manager if any metric falls below the target level.

TABLE B.1. GAP ANALYSIS

	Units	EOL Targets		
Characteristics			RPT0	RPT##
Peak Pulse Discharge Power(10s)	kW	9		11.4
Peak Pulse Discharge Power(1s)	kW	11		14.4
Peak Regen Pulse Power (5 sec)	kW	11		
Cold anonlying nervon at 20 °C	kW, 0.5s	6	TBD	
Cold cranking power at -30 °C	kW, 4.0s	4	TBD	
Available Energy for Cycling @ 11 kW	Wh	105		226.6
Total Available Energy @ 5kW	Wh	313		455.9

APPENDIX C – VOLTAGE DEFINITIONS

This appendix provides a graphical description of the voltage limits defined in Section 3.1.1. Figure C.1 shows all of the voltage definitions and the associated range of operation. The test article is typically operated between $V_{max_{op}}$ and V_{min_0} so as not to introduce any artificial degradation mechanisms that are not representative of vehicle operation. Pulse voltage limits on the upper and lower ends are also available ($V_{max_{pulse}}$ and $V_{min_{pulse}}$, respectively) for short durations. $V_{min_{op}}$ and it is a variable parameter that will generally decrease as the test article ages and the minimum value should be supplied by the manufacturer (typically, the lowest allowable voltage for $V_{min_{op}}$ is higher than V_{min_0}). The value of $V_{min_{op}}$ can be tracked at the request of the technical program manager.

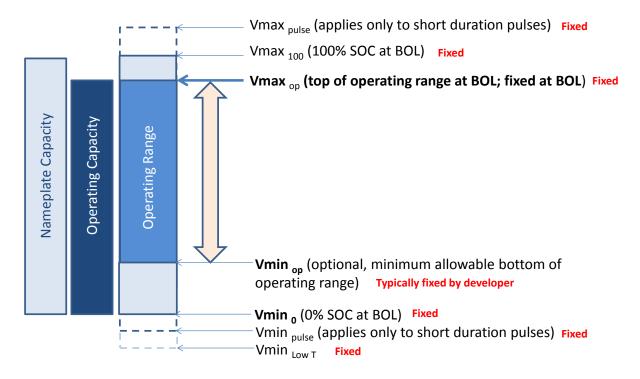


Figure C.1. Voltage Definitions and Key Concepts

APPENDIX D – TEST PROGRESSION FLOW DIAGRAM

This appendix is intended to show the flow of the tests outlined in section 3. Test may be added, moved, or removed with the approval of the technical program manager and the test lab lead.

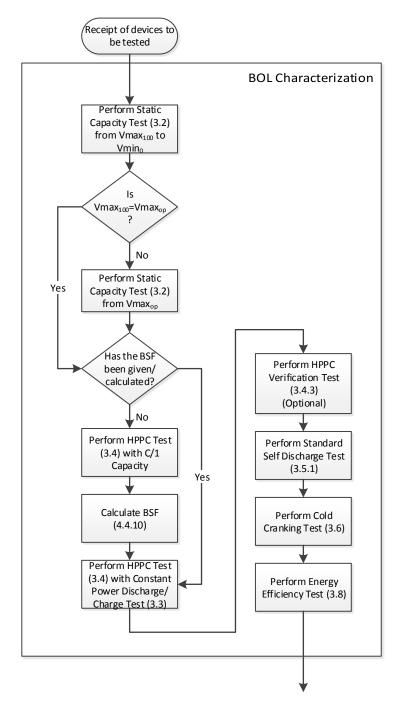


Figure D.1. Beginning of Life Characterization Test Flow

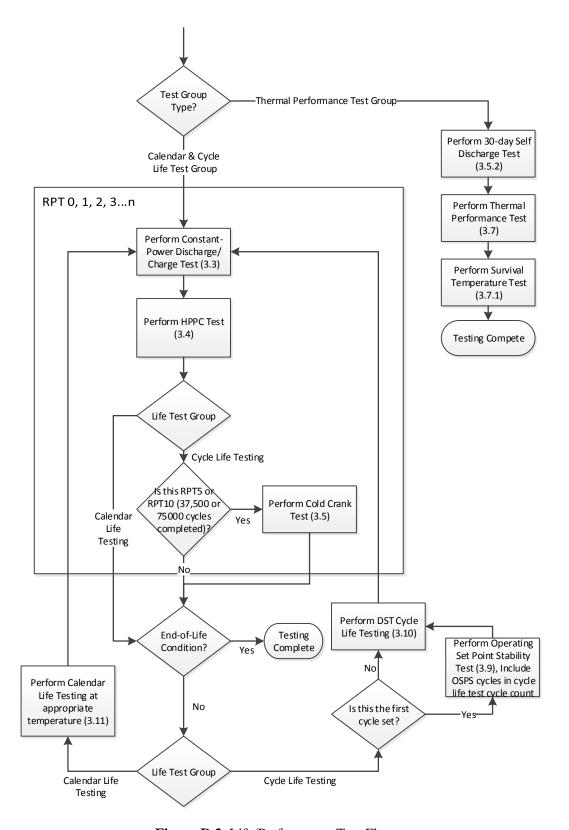


Figure D.2. Life/Performance Test Flow

APPENDIX E – DEVELOPER / NATIONAL LABORATORY DELIVERABLE CHECKLIST

The following is a list of "Best Practices" that are strongly recommended for developers and testing labs prior to shipping and upon receiving deliverables. These practices are to ensure the integrity of a deliverable and that testing can be started and conducted safely.

Developer Deliverable Checklist

The Developer shall ensure the following items have been completed prior to shipping to the National Laboratory:

- A test plan has been developed and approved by the Developer, USABC Working Group, and the testing lab (National Laboratory). The test plan must include the following items.
 - o Detailed charging protocol with the following parameters:
 - Maximum taper current time (default 1 hour unless otherwise specified)
 - Constant voltage taper current cutoff (default C/20 if not otherwise specified)
 - Maximum % over the constant current charge capacity done during the constant voltage charge (default 5% if not otherwise specified)
 - Maximum allowable change in temperature above ambient during charge (default 10°C if not otherwise specified)
 - Fixture Requirements (Fixtures should replicate conditions that would be seen in the vehicle):
 - Clamping Force / Torque / Pressure
 - Fixture Drawings / Specifications / Materials if fixtures are not to be provided
 - Any other data about fixtures that could impact safety or performance.
- A cell chemical composition sheet, and chemical safety data sheet (SDS). Below is an example of a chemical composition sheet, the sheet should contain any material that is an environmental, or health and safety hazard.

Cell Chemical Composition:

Constituents*	% by weight
Anode	
Si based nano (example)	XX
Cathode	
NMC	XX
Electrolyte	
EC	XX
EMC	XX
Other solvents and	XX
additives	
LiPF6	XX
Total electrolyte weight	xx
Other	
RCAC Metals (Arsenic,	Include Quantity
Barium, Cadmium,	
Chromium, Mercury,	
Selenium, Lead, Silver)	

^{*}please note any non-traditional constituents that might have additional handling hazards. Total electrolyte weight is needed for environmental release calculations

- Perform a Static Capacity Test as outlined in the program specific USABC testing manual within 30 days prior to shipping to the testing lab.
 - o Data from static capacity shall be supplied to the testing lab.
- o Collect the following data within 7 days prior to shipping to the testing lab. The data shall be relayed to the testing lab and the USABC Workgroup.
 - o Open Circuit Voltage
 - o AC Impedance (at 1kHz)(if available)
 - o Battery weight without fixture
 - o Battery weight with fixture (if fixture is provided)
- o Fixtures and interface methods should be consistent with the end use automotive application.

Test Laboratory Deliverable Checklist

The testing laboratory shall ensure the following items have been completed upon receipt and prior to the start of testing of deliverables at the National Laboratory:

- A visual inspection with photo documentation shall be conducted, and it should include the following items.
 - Packaging as received, which include outer package and how the batteries are arranged in package (document any damage of abnormalities)

- o Batteries as received (document any damage of abnormalities)
- o Polarity and connection methods
- o Fixture
- Other hardware
- Measurement of the following parameters during the receipt check in.
 - o Open Circuit Voltage
 - o AC Impedance (at 1kHz)
 - o Battery weight without fixture
 - o Battery weight with fixture (if fixture is provided)
 - o Cell dimensions using the USABC guidance method.
- The testing lab will analyze the data from the developer and compare it to the data taken at the lab to identify anomalies.
- o Record fixture installation parameter (torque, pressure, force, etc.)
- Perform the Static Capacity Test as outlined in the USABC Testing manual prior to any other testing.
- The following limits will be imposed
 - o Maximum taper current time (default 1 hour unless otherwise specified)
 - o Constant voltage taper current cutoff (default C/20 if not otherwise specified)
 - Maximum % over the constant current charge capacity done during the constant voltage charge (default 5% if not otherwise specified)
 - Maximum allowable change in temperature above ambient during charge (default 10°C if not otherwise specified)