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FORWARD

This Battery Life Estimator Manual was prepared for the United States Department of
Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle
Technologies Program. It is intended to assist developers in successfully estimating
battery life capability for electric, hybrid-electric, or plug-in hybrid electric vehicle
applications based on accelerated performance and life characterization using the
procedures that have been defined in the previously published DOE testing manuals. The
original publication of this Battery Life Estimator Manual included life estimation
techniques based on a default linearizable model. In Revision 1, a default nonlinear
model is also included as well as a rate-based degradation model that can be useful in
assessing memory effects during aging under non-isothermal conditions. A software
package (“BatteryLife.exe”) has also been developed based on the methodologies and
default models that are described in this manual; software licenses can be obtained from
Argonne National Laboratory.

The DOE-United States Advanced Battery Consortium, Electrochemical Energy Storage
Technical Advisory Committee supported the development of this manual. Technical
team point of contacts responsible for its development and revision are Jon P.
Christophersen of Idaho National Laboratory (INL), Ira Bloom of Argonne National
Laboratory (ANL), Edward Thomas of Sandia National Laboratories (SNL), and Vincent
Battaglia of Lawrence Berkeley National Laboratory (LBNL).

The development of this manual was funded by the United States Department of Energy,
Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.
Technical direction from DOE was provided by David Howell, Energy Storage R&D
Manager and Hybrid Electric Systems Team Leader, and Brian Cunningham, Energy
Storage Testing, Design, and Analysis Program Manager.

Comments and questions regarding this manual should be directed to Jon P.
Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).
Comments and questions regarding the Battery Life Estimation software tool should be
directed to Ira Bloom at the Argonne National Laboratory (ira.bloom@anl.gov).
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GLOSSARY OF TERMS

Beginning of Life (BOL) — The point in time at which life testing begins. A distinction is
made in this manual between the performance of a battery at this point and its
initial performance, because some degradation may take place before the start of
life testing. Analysis of the effects of life testing is based on changes from the
BOL performance.

Calendar Life — The time required to reach end of life at the reference temperature at
open-circuit (corresponding to key-off/standby conditions in the vehicle).

Cycle Life — The number of consecutive cycles consisting of a charge neutral
combination of discharge and charge pulses centered on a given state-of-charge
for Hybrid Electric Vehicles (HEVs) or between given voltage limits for Plug-in
Electric Vehicles and Electric Vehicles (PHEVs and EVs) required to reach end
of life at the reference temperature.

Degradation Model — An empirical- or chemistry/physics-based model that describes the
expected degradation of a battery experiencing typical stress conditions.

Depth of Discharge (DOD) — The percentage of a device’s rated capacity removed by
discharge relative to a fully charged condition, normally referenced to a constant
current discharge at the C,/1 rate. The capacity to be used is established (fixed) at

the beginning of testing, %.

End of Life (EOL) — A condition reached when the device under test is no longer capable
of meeting the applicable USABC goals. This is normally determined from RPT
results, and it may not coincide exactly with the ability to perform the life test
profile (especially if cycling is done at elevated temperatures.) The number of
test profiles executed at end of test is not necessarily equal to the cycle life per the
USABC goals.

End of Test (EOT) — The point in time where life testing is halted, either because criteria
specified in the test plan are reached, or because it is not possible to continue
testing.

Error Model — A model that accounts for the difference between the measured and
expected performance. The error model combines the effects of both
measurement error and manufacturing variability.

Lack of Fit Statistic — A statistic that measures the implausibility of the observed data
given the assumed degradation and error models. The statistic compares the
differences between the observed average response (e.g., relative resistance)
within each treatment/group and the response for that group that is predicted by
the degradation model. The differences are normalized by the within-group
standard deviation predicted by the error model. The sum of the differences
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forms the lack of fit statistic. Abnormally large values of the statistic indicate
lack of fit.

Memoryless Degradation — A process wherein the degradation rate of a cell depends only
on its present state and present stress levels.

Reference Performance Test (RPT) — A periodic assessment of battery degradation during
life testing. A reference performance test will typically yield capacity fade, power
fade, and impedance rise as a function of test time.

State of Charge (SOC) — The available capacity in a battery expressed as a percentage of
actual capacity. This is normally referenced to a constant current discharge at the
Cy/1 rate. For this manual, it may also be determined by a voltage obtained via a
relationship of capacity to voltage established at beginning of life. SOC = (100 —
DOD) if the rated capacity is equal to the actual capacity, %.

Stress Factors — The parameters that are used to accelerate aging of a battery technology,
such as temperature, state-of-charge, throughput, and pulse power. These are the
explanatory variables in the degradation model.
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Battery Calendar Life Estimator Manual

1. INTRODUCTION

1.1 Purpose and Applicability

The purpose of this Battery Life Estimator (BLE) Manual is to assist developers in their
efforts to determine the life capability of advanced battery technologies for automotive
applications. Testing requirements and procedures have been previously defined in
various manuals (e.g., References 1 through 4) published under the United States
Advanced Battery Consortium (USABC). This manual describes a standardized method
for determining the calendar life capability of battery technologies with a high degree of
statistical confidence based on models and degradation data acquired from typical
USABC performance testing.

A software package (“BatteryLife.exe”) has also been developed to estimate calendar life
capability based on the methodology described herein. To acquire the software, users
must first download and sign the license agreement at http://www.anl.gov/techtransfer/
Software_Shop/TLVT/TLVT.html. USABC developers can license the software at no
cost, but others will have to pay a nominal fee. The degradation models presented in this
manual have been included as default options for quick implementation to a set of data.
However, the software can also accommodate other degradation models that are
applicable to a particular chemistry.

The offline battery life estimation methods provided in this manual and associated
software tool are typically performed during Stage 1 or Stage 2 testing as defined in the
Technology Life Verification Testing Manual (TLVT, Reference 5). Stage 1 testing
consists of short-term screening studies of a battery technology to assess its performance
capability relative to the USABC targets. Applied examples of battery life estimation
based on Stage 1 testing for a set of experimental cells are provided in References 6 and
7. Stage 2 testing assumes a reasonably mature cell chemistry that is subjected to
accelerated aging techniques to demonstrate its readiness for transition to production.
Battery life estimation techniques could also be applied for Stage 3 testing, where
complete battery systems are assessed for implementation and projected warranty costs,
but other critical variables should be included within the models (e.g., cell balancing,
thermal management, etc.). Stage 4 is for online battery health assessment, which can
use the models and offline life estimation results as a baseline to gauge performance
capability.

This manual specifically covers calendar-life estimations based on a default linearizable
or nonlinear battery degradation model and associated error model. However, the
software tool also provides an option to estimate cycle-life capability with performance
degradation as a function of cycle number. The resulting life estimation will be based on
the total number of cycles a battery is predicted to be able to complete at a given stress
factor (i.e., temperature or state-of-charge).



1.2 Manual Organization

This manual is organized into five main sections. Section 2 describes the default
statistical models implemented in the software tool (both linearizable and nonlinear
forms) as well as the methods for estimating model parameters and cell life from
experimental data. This section also presents a methodology for assessing the uncertainty
of the estimated cell life using Monte Carlo simulations. Section 3 demonstrates the
capabilities of both the linearizable and nonlinear models when applied to a set of
experimental data. Section 4 describes a rate-based modeling approach that could be
applied when steady state conditions are not present and provides an example of how this
model could be implemented using a set of experimental cells that were aged under non-
isothermal conditions. Section 5 is a wuser’s guide for the software tool
(“BatteryLife.exe”) and provides details on data formatting, menu navigation, and data
processing. Appendix A is an extended discussion of parameter estimation using robust
regression techniques.



2. METHODOLOGY FOR ESTIMATING CALENDAR-LIFE

This section describes a methodology for estimating the average calendar life capability
of various cell technologies and assessing their readiness for transition to production.
Consequently, the emphasis is placed on predicting the capability of #ypical (i.e.,
representative) cells to meet the USABC target of a 15-year calendar life. A two-part
model can be constructed from the experimental test data. The first part is the
degradation model that represents the average cell performance as a function of aging
over a range of stress conditions. The second part is the error model that represents the
deviation of the cell behavior relative to the average performance. The degradation
model provides a basis for the estimation of average cell life and the error model provides
a basis for assessing the accuracy of the degradation model.

The degradation model can be empirical, chemistry/physics-based, or some combination
of both (i.e., semi-empirical). A wide variety of model forms are possible. The specific
form of the model will necessarily depend on the particular technology and set of stress
factors. For Stage 1 and Stage 2 testing, as defined in the TLVT Manual (Reference 5),
there will generally be incomplete knowledge of the specific degradation mechanisms or
the source of the deviations between average performance and actual measured
performance. Thus, relatively simple empirical or semi-empirical models with few
parameters should be used for life estimation, though physics-based models could also be
used if they are available. Simple forms of a degradation model and error model that
have been successfully implemented for a variety of technologies are illustrated herein.
The methodology for estimating model parameters, assessing model accuracy, and
estimating mean cell life with associated uncertainty are also described.

2.1 Generalized Model

The use of accelerated degradation testing to verify life capability requires the selection
of performance measures that accurately reflect battery state of health (Reference 5). An
example performance measure is relative resistance (i.e., the cell resistance at time ¢
divided by the resistance at beginning of life, # = 0). The generalized model must relate
the measured cell performance at any given time to a combination of the stress factors.
For example, in the case of calendar-life experiments with a single stress factor of
temperature, the acquired data can be represented generically by the model shown in
Equation (1), where K.(T ;t) represents the measured performance (e.g., relative
resistance) of the i cell in the test matrix after being subjected to aging for time ¢ at
temperature 7' (Reference 6). The average cell performance is represented by a
degradation model, y(T ;t), which may be in a linearizable form (Section 2.2) or a
nonlinear form (Section 2.3). The combined effects that are related to the unique
behavior of the i individual cell and measurement error are represented by an error
model y,(T’;¢), which is described in Section 2.4.

Y,(T3t)= u(T;0)+ y,(T3t) (1)



2.2 Linearizable Degradation Model

In the example case of a single stress factor (temperature), a simple but useful form for a
linearizable degradation model is given by Equation (2), where f,, f,,and p represent
the model parameters (Reference 6). This is a semi-empirical model that combines the
observed behavior from acquired test data with a chemistry/physical basis. In the generic
case, the physical basis of this model comes from an assumed Arrhenius behavior (i.e.,
exp(1/7)), which is a thermally activated process. When the observed degradation has a
square-root of time dependence (i.e., p = 0.5), the model describes a diffusion controlled
process that is governed by parabolic kinetics.

/U(T;t):“'exp{ﬂo"'ﬁl'%}'tp (2)

Note that x(T;¢)=1for ¢ = 0 and then increases in value as the cell ages. Various
normalized responses, including relative resistance, are consistent with these conditions.
If the natural response decreases to zero as a function of cell age, y(T ;t) can be
considered as a model for the inverse of the natural response. Examples of a naturally
decreasing response include relative power and relative capacity. In such cases, ,u(T ;t)
can be considered as a model for inverse relative power or inverse relative capacity.

To estimate the parameters associated with this degradation model, it is useful to re-
express the model in a linear form with a log transformation as shown in Equation (3).
Once the model has been linearized, robust regression can be used to estimate the model
parameters using the methods described in Section 2.5.

log(u(T;t)-1)= B, + B, -%w-log(t) (3)

A generalized form of the linearizable degradation model is shown in Equation (4). This
model form assumes multiple stress factors, X;, X>,...X,, as a function of test time. As
discussed in the TLVT Manual (Reference 5), these stress factors can include
temperature, state-of-charge (SOC), throughput, and pulse power ratings. The
corresponding model parameters are S, f5,, f5,,...,5, and p.

1(X, Xy, X st)=1+exp{ B, + BX, + X, +..+ BX,} 1 (4)

2.3 Nonlinear Degradation Model

Some battery performance data are not easily fit with a linearizable model. A nonlinear
degradation model is shown in Equation (5) using the example case of a single stress
factor (temperature), where f,, 5,,and p represent the model parameters. This model

form is also semi-empirical and the physical basis comes from a logistic growth



perspective, where the change in the degradation parameter becomes limited by the lack
of reactive materials. Specific applications of this model can vary depending on the
observed trends in the performance data. The generalized form for this nonlinear model
with additional stress factors is shown in Equation (6).

u(T;f){Hexp{ﬂwﬂl%}tT ()

(X, Xy, X 5t) =1+ exp{ B, + BX, + B, X, +...+,B,1Xn}-t]p (6)

For this nonlinear form, model parameters are estimated with the Levenberg-Marquardt
method (References 8 and 9). The Levenberg-Marquardt method is an iterative algorithm
that is used to find the minimum of a nonlinear function. =~ When used in the context of
curve fitting, this method minimizes the least-squares errors between the data and the
objective function, f, and can be expressed as shown in Equation (7), where J is the
matrix of gradients of /' with respect to each S, f is a parameter of f(x, f), 4 is a dampening
factor, o0 is an incremental change in £, and y is the observation at x (Reference 9). For
this implementation, the Levenberg-Marquardt method uses the same robust regression
techniques described in Section 2.5 to make it less sensitive to outliers and to estimate
errors.

[(979)+ Adiag(J73) |6 =97 [y~ (B)] 7)

2.4 Error Model

The error model accounts for the difference between the measured performance and
expected performance. The difference is a combination of effects due to measurement
error as well as physical and chemical variations in cell manufacturing. Two different
approaches for determining the measurement error are discussed in this section. One
method estimates the error from the measured data, and the other method independently
determines the error based on calibration and accuracy checks of the test equipment. The
software tool (“BatteryLife.exe”) provides both options to the user for life prediction.

2.4.1 Estimated Error Model

In the example case of a single stress factor (temperature), a useful form for the estimated
error model (Reference 6) is given by Equation (8), where d; represents a random, cell-

specific, proportional effect with variance o, andz,(¢) represents the effects of

measurement error on YI.(T ;t).

7;‘(T;t):5i'(ﬂ(T;t)_1)+7z-i(t) (8)



Using relative resistance as the performance measure, the expression for K.(T ;t) is as
shown in Equation (9), where R, (i,?) is the unknown (but true) value of the resistance

of the i cell at time #, and g, (t) is the specific unknown error associated with that

measurement.
K(T,f): Rtrue(i’t)+ gi (t) (9)
Rtrue (1’0) + gi (0)

The resulting error model due to measurement effects is shown in Equation (10).

_ Rtrue (l’ t) + gi (t) _ Rtrue (l’ t)
ﬂi (t) - Rtme (Z,O) + gi (0) Rtme (Z,O) (10)

It is assumed that the measurement errors are independent with a relative standard
deviation of a (i.e. o, =a-R,,,(i,0)). With this and other assumptions (Reference 6), the

variance of r, (t), given by &, can be approximated by 2 - 2.

Assuming that the mean values of¢, (t) and O, are zero, then within a given group of

cells that have experienced the same stresses and aging time, the mean and variance of
K.(T ;t) can be expressed as shown in Equations (11) and (12). Robust regression (see

Section 2.5) is used to estimate the variance model parameters (o; ando).
Mean(Y,(T;t))= u(T;t) (11)

Var(Y(T;t)=Var(y,(T50)) = o5 - (u(T3) 1) + o (12)

Thus, this model of the variance within a treatment group and Reference Performance
Test (RPT) (References 1-4), implies that the expected variability in cell performance
increases as the expected level of degradation increases.

2.4.2 Independent Assessment of Measurement Error

Alternatively, the magnitude of measurement error can be estimated directly using the
uncertainty methodology developed at the Idaho National Laboratory (References 10 and
11). First, the effect of measurement error can be minimized with test equipment
calibration and verification. Calibration can be performed using the manufacturer’s
recommended procedures. Verification consists of independent measurements of test
channel voltage and current outputs at various levels within the channel full scale
operating range. The total equipment and channel error can then be determined by the
measured data and the uncertainties of the independent measurement equipment (i.e., a
digital voltmeter and shunt for current measurements). If the results from this analysis
show poor accuracy or repeatability, the test equipment should be calibrated and verified



again until the results are less than or equal to the claimed values of the manufacturer
(e.g., 0.02% of full scale repeatability).

These data are also useful in determining the uncertainty range of the performance
parameters of interest for the life prediction model. Each performance parameter (e.g.,
resistance, power, capacity, and energy) is a function of voltage and current
measurements (temperature uncertainty is treated elsewhere). The uncertainty expression
associated with that performance parameter can be determined based on the accuracy and
precision of the voltage and current measurements as determined during the initial
calibration or in-test calibration checks, and low-order Taylor Series approximations of
the performance parameter with respect to the independent voltage and current
measurements. For example, the uncertainty expression for resistance as defined in the
USABC Manuals (References 1-4) is given by Equation (13), where Vgs and Irs are the
test channel’s full scale voltage and current range, respectively; %oerrVcar and %errlcar
are the calibration errors due to the independent digital voltmeter and shunt used to
measure the accuracy during the calibration check; and %errVsrp and %errlsrp are the
standard deviations determined experimentally from the accuracy measurements.

b2

0 2 0 2
%R, =| 2| —2 Vs | ol s | (et )+ (herrlL, ) | (13)
V(ta)_V(tb) I(ta)_l(tb)

2.5 Robust Regression

The parameters associated with both the degradation and error models are estimated with
a robust regression procedure because it has reduced sensitivity to anomalous data (i.e.,
outliers). Consequently, the parameter estimates are not greatly affected by the outliers.

Robust regression procedures also are valuable when the error variance is not constant
across the experimental space, as is the case for the assumed error model in Section 2.4.

The particular procedure implemented in this manual includes three iterations of
weighted least-squares regression (Reference 12). For the first iteration, ordinary least-
squares regression is used (i.e., the relative weights are identical). For subsequent
iterations, the weights are based on Tukey’s biweight function (Reference 13).
Appendices A and B provide more details concerning parameter estimation for the
linearizable model (Section 2.2) and nonlinear model (Section 2.3), respectively.

2.6 Life Prediction

The fitted degradation model can be used to estimate the mean lifetime of a cell for given
stress factor conditions and end-of-life (EOL) criteria. The EOL criteria will depend on
the number of stress factors that are included in the life model. For the example case of a
single stress factor (temperature) and a performance measure of relative resistance, the
EOL criterion could be defined as a 30% increase in degradation at a temperature of 79



(i.e., u(]});t) = 1.3 at EOL). Given the linearized degradation model in Equation (3), the

resulting estimated lifetime, 7, , is shown in Equation (14), where ,@O, ,[3’1, and p are the

estimated parameter values that were determined from the robust linear regression
approach in Section 2.5 and Appendix A. Given the nonlinear model form in Equation

(5), the resulting estimated lifetime is shown in Equation (15), where ,5’0, ﬂAl, and p are

the estimated parameter values that were determined from the robust nonlinear regression
approach in Appendix B.

log(0.3)—{ﬁo +5, 1{}

AN Y 5 (14)

%
A 13 -1
lgoL = (15)

exp[:éo +:B1 ]le

In a more generalized case of the nonlinear model, EOL can also be estimated using a
“half-the-interval” iterative method. In this approach, initial boundary conditions are set
for the minimum and maximum life interval (e.g., 0 and 100 years, respectively). If the
calculated mean lifetime of the cell at the midpoint of the boundary values is different

from the EOL criterion ( ,u(]});t) = 1.3 for relative resistance in this example), the value

of the midpoint will be deceased or increased depending on whether the calculated life
capability is greater than or less than the EOL criterion, respectively. This iterative
process will continue until the calculated value for the mean lifetime of the cell is within

a given tolerance of the EOL criterion, at which point the value of time, 7,,,, will be

reported. If the dependent variable, ,u(T ;t), is a naturally decreasing response instead

(e.g., relative capacity and relative power), then the logic is reversed when adjusting the
value of the midpoint.

2.7 Monte Carlo Simulations

Monte Carlo simulations based on the fitted degradation and error models, in conjunction
with a variant of the parametric bootstrap procedure (Reference 14), are used to assess
the uncertainty of the cell life and associated model parameters. Simulation results
provide a basis for assessing the quality of the model based on “lack-of-fit” statistics
(Section 2.8). Assuming that the forms of the degradation and error models are accurate,
the simulations can then be used to assess the uncertainty of the mean cell life as well as
the model parameters estimated from experimental data.



Using a performance measure of relative resistance as an illustration, the overall model in
Equation (1) can be expanded to the form shown in Equation (16), where j represents the
stress condition and ij represents the i cell within the j” stress condition. Yi(?)
represents the measured relative resistance of the ij” cell at time ¢ and ,u(X j;t) represents

the expected relative resistance for cells under the j” stress condition at time t. &
represents the random proportional effect of the i cell, and T, (t) represents the effect

of the random measurement errors on relative resistance associated with the ij” cell at the
initial measurement and at time ¢. The last term can be notionally partitioned into two

terms: 7, (¢)= A, (0)+ 4,(¢), where A; represents the effect of the individual

measurement errors on relative resistance at beginning of life and at time ¢. For these

simulations, the random effects, dj,il.]. (O), and ll.j (t), are assumed to be independent and

normally distributed each with a mean of zero and variance ofc}, &, and o,
respectively.

Y, ()= X )+ 6, (X 50)= 1)+ 7, (1) (16)

Monte Carlo simulations should be performed with the overall test matrix that is
developed using the methods provided in the Technology Life Verification Manual
(Reference 5). The experimental conditions are designed to adequately assess cell
chemistries for a given set of stress factors and should include the test duration, RPT
frequency, number of experimental conditions, and number of cells per condition. Due to
resource limitations, not every experimental condition may be verified with actual cell
testing, but a sufficient subset of the overall test matrix should be conducted to
adequately fit the degradation and error models using the robust regression techniques
discussed in Section 2.5. The general approach for assessing the uncertainty of the life
estimate is to repeatedly simulate the overall test matrix that was designed based on the
TLVT approach while also matching the conditions of the actual experiment. For each
independent simulation trial (representing a single realization of the complete
experiment), different random realizations of cell-to-cell effects and measurement errors
are added to the assumed truth provided by the degradation model that was fitted to the
actual experimental data. First, the number of stress conditions that were used (J), the
number of cells tested per condition {n sij=1d }, and the times at which the cells were

measured {f, :k=1:K} are identified. Next, the degradation model for each combination

of  stress condition and  measurement  time can  be computed
with {y(X b ): ( j=1:J )x (k =1:K )} Finally, using this setup, a number of independent
trials are completed as follows:

1. Simulate {5” : (i =1:n, )with ( j=1:J )}, where the Jj are sampled independently

from a normal distribution with mean zero and standard deviation, o .



2. Simulate {/11.]. (0): (i =1l:n, )With (j=1: J)}, where the 4, (0) are sampled

independently from a normal distribution with mean zero and standard deviation
a.

3. Simulate {ﬂg(z‘k ): (i =1: nj)with (j=1:J)and (k =1: K)}, where the /1l.j(tk) are
sampled independently from a normal distribution with mean zero and standard
deviation « .

4. Combine the constituent effects from Steps 1 through 3 to form the simulated
data: Y (tk): ,u(Xj;tk)+ o, -(,u(Xj;tk )— 1)+ A (0)+ Ay (tk) and ensure that
Y, (,)>1

5. Model the collective set of simulated performance data (e.g., relative resistance)
for the current trial:
a. Estimate model parameters (degradation and error)
b. Estimate average cell life
c. Compute the lack of fit sum of squares (SS, ) (Section 2.8)

The summary statistics (e.g., standard deviations and order statistics) of model
parameters, estimated cell life, and SS,,. across trials can then be computed. The

standard deviations of the model parameters and estimated cell life are referred to as
bootstrap standard errors.

2.8 Lack-of-fit Statistic

Another important aspect of successfully estimating the mean cell life is to assess how
well the degradation model fits the experimental data (i.e., the level of performance
variation observed for cells aged under a common stress condition). Inaccuracies in the
degradation model are detected by the lack-of-fit statistic shown in Equation (17), where
J is the number of stress conditions, K is the number of RPT’s (the beginning of life RPT

is denoted as RPTO0), )7” is the average performance measure (e.g., relative resistance) of

the j” stress group at RPTK corresponding to some time ¢ (consisting of nj cells), /1, is

A

the fitted degradation model for the j stress group at RPTK , and & . 1s the fitted error

model for the /" stress group at RPTK, as shown in Equation (18). Note that Equation
(17) is normalized by the product of the number of stress conditions and RPTs (JK) to
enable a comparison across different experiments.

s, o1 ii " (T -1, ) (17)
LOF JK = = O’\_ftk Jt T
62 =62-(a, —1f +6? (18)
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Monte Carlo simulations (Section 2.7) based on the developed degradation and error
models are used to assess the lack-of-fit statistic. The value of SS,,. based on the

original data i1s compared with the empirical distribution of the SS,,. values obtained

from the simulation trials. An unusually large value for the lack-of-fit statistic (e.g.,
greater than the 95" percentile of the simulated SS,,. values) is indicative of model

inaccuracy.

2.9 Application to Calendar Life Data

The recommended pathway for demonstrating adequate calendar life of a battery
technology given a set of experimental data from typical USABC testing (References 1-
4) is as follows:

1. A deterministic degradation model (Sections 2.2 and 2.3) is developed to reflect
the average (i.e., typical) cell degradation over time as a function of various stress
factors such as temperature and state-of-charge. This model must be accurate
over the anticipated range of conditions the cells will experience. It is also
assumed that the cell technology is sufficiently advanced such that, given a
standard reference (e.g., 30°C), the model will predict a life capability exceeding
the target requirement with some significant margin (i.e., the lower confidence
bound for predicted life must exceed the 15 year goal).

2. An accurate error model (Section 2.4) is developed to reflect the cell-to-cell
variability in observed degradation about the average behavior. This model
accounts for variability due to measurement error as well as the intrinsic
differences between cells.

3. The degradation and error models from Steps (1) and (2) are used as the basis for
conducting Monte Carlo simulations (Section 2.7) to assess the lack-of-fit statistic
(Section 2.8).

4. If there is no evidence for lack-of-fit, the average cell life is estimated at the lower
confidence limit via the fitted degradation model. If evidence of lack-of-fit exists,
the degradation model may need to be modified and this could require additional
testing with extra experimental conditions.

5. Adequate calendar life of a battery technology is demonstrated if the lower
confidence limit bound of the estimated cell life exceeds the requirement.

11



3. APPLICATION

Both the linearizable and nonlinear modeling methodologies described in Section 2.0 can
be illustrated using test data acquired from high-power SAFT VL7P lithium-ion
cylindrical cells (Reference 6). The primary purpose of the cell testing activities
described in this section was to demonstrate the accelerated aging methodology presented
in the TLVT Manual (Reference 5). Section 3.1 describes the experimental test setup for
these cells. The resulting model fits of the experimental test data based on the default
linearizable and nonlinear models are then presented in Sections 3.2 and 3.3, respectively.

3.1 Experimental

Experimental testing was conducted with high-power SAFT VL7P lithium-ion cylindrical
cells that were rated at 7.0 Ah with a voltage range of 4.0 to 2.7 V (Reference 6). Cell
aging at the Idaho National Laboratory (INL) was conducted with a Maccor series 4000
battery tester having a maximum voltage and current rating of 10 V and 12.5 A,
respectively. The cells were also placed in temperature chambers that maintained
ambient conditions to within £3°C of the target during testing.

The experimental matrix is shown in Table 3.1 and consisted of 30 cells with three cells
per test condition. Accelerated aging was performed at three temperatures (40, 47.5, and
55°C) and three SOCs. The SOC conditions centered on the “maximum SOC” (i.e.,
SOCmax) which was defined at 62% (Reference 6). As such, the other two SOC
conditions per temperature group (i.e., SOCwmax - 10% and SOCyax + 10%) were 52 and
72%, respectively. Only the 62% SOC condition was used for the reference temperature
of 30°C. All cells were subjected to calendar-life aging at the target temperature and
SOC with reference performance tests every 31.5 days.

Table 3.1. SAFT VL7P cell test matrix

Group#  Temperature %if;;i_ Cells
1 30°C SOCmax 3
2 40°C SOCmax -10% 3
3 40°C SOCwmax 3
4 40°C SOCyaxt+10% 3
5 47.5°C SOCmax-10% 3
6 47.5°C SOCwmax 3
7 47.5°C SOCyaxt+10% 3
8 55°C SOCnmax-10% 3
9 55°C SOCwmax 3
10 55°C SOChaxt+10% 3

12



The SAFT VL7P cells were first characterized with four C,/1 static capacity tests, each of
which consisted of a constant current discharge at the rated value of 7.0 A to the
minimum voltage from a fully charged state. This was followed by a low-current hybrid
pulse power characterization (L-HPPC) test using the procedures defined in the HEV
Manual (Reference 2). The final characterization test consisted of discharging the cells
from a fully charged state in 5% depth-of-discharge (DOD) increments with a one hour
rest in between each increment to establish the relationship between SOC and the open-
circuit voltage.

Calendar-life testing consisted of resting the cells at the designated SOC (based on the
corresponding open-circuit voltage) and test temperature. The cells were soaked at the
target temperature for at least eight hours prior to the start of a calendar-life test to ensure
thermal equilibrium. Once every 24 hours during aging, the cells were taper charged
back to the target open-circuit voltage condition. ~ Reference performance tests were
conducted at 30°C and consisted of a modified L-HPPC test as defined in Reference 6.
The model fits described below are based on changes in relative resistance over seven
RPTs (i.e., approximately 221 days of calendar-life aging at accelerated test
temperatures).

3.2 Linearizable Model

For the linearizable model form in Equation (2), robust linear regression (Section 2.5,
Appendix A) was used to estimate the model parameters ( 5,, 5,, and p ) using relative
resistance as the performance measure. The fitted degradation model is given in
Equation (19), where the resulting parameter estimates and associated standard errors are
in Equation (20). These parameter estimates were based on the acquired experimental
data at the elevated test temperatures (i.e., 40°C, 47.5°C, and 55°C). All of the SOC
conditions at each temperature were used to estimate the model parameters since the
effect between SOCpax, SOCyax - 10%, and SOCyax + 10% was not statistically
distinguishable (Reference 6). From these estimates, the data clearly describe a diffusion
controlled process governed by parabolic kinetics since p= 0.5. Figure 1 shows the
experimental test data and the corresponding linearized model fit; the temperature groups
are shown in units of Kelvin (e.g., “328.0” refers to the 55°C temperature conditions,
etc.). The model prediction at the reference temperature of 30°C is also included and, as
shown, appears to be a good fit for the experimental data.

fz(X;r)=1+exp{f?o +5 -%}-t" (19)
£, =18.60 (1.2)

3, =-6360 (393) (20)
p=0.5285 (0.021)
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Figure 1. Fitted linearized model versus experimental data

The error model described by Equation (8) was also fit to the experimental data at the
elevated test temperatures using robust linear regression. Figure 2 shows the resulting
error model fit and the estimated parameters are shown in Equation (21). From these
estimates, it can be inferred that the cell-specific proportional effect has a standard
deviation of about 0.06 while the measurement error has a relative standard deviation of
about 0.01. Although this implies that the linearizable degradation model matches
relatively well with the experimental data, significant lack-of-fit was detected using the
methodology described in Section 2.8. The value of SS,,, from Equation (17) based on

the experimental data was 1.5158. This result exceeded the 97" percentile of SS,,,

values obtained with the simulation trials, which is indicative of model inaccuracy. The
lack of fit can be observed, for example, in Figure 1 at the highest temperature (55°C)
where the model tends to under-predict the observed resistance gain at two months while
over-predicting the observed resistance gain at six months.
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Figure 2. Fitted error model for linearizable case

Nevertheless, despite the evidence for lack-of-fit, the fitted degradation model can be
used to estimate the mean lifetime of the cells to demonstrate the approach described in
Section 2.6. Assuming the EOL criterion is defined to be a 30% increase in relative
resistance at the reference temperature of 30°C, the resulting life prediction is shown in
Equation (22), where the value of temperature is in units of Kelvin (i.e., 303 K). Using
the model parameter estimates in Equation (20), the estimated mean lifetime of the cells
is 7,,, = 9.4 years. The bootstrap methodology (Reference 14) can then be used to assess

the statistical uncertainty in the predicted lifetime. Figure 3 shows results of 1000
bootstrap simulations for the VL7P experimental cell data based on the linearized
degradation model (Reference 6). Figure 4 provides a graphical representation of the
resulting weighted average for the mean cell lifetime capability at the reference
temperature of 30°C with the corresponding upper and lower confidence levels. The 95%
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lower confidence level is 7.9 years since 950 of the 1000 simulation results exceeded that
life estimate. The 95% upper confidence level is 12.5 years since the predicted mean life
for 50 of the 1000 simulations results showed higher estimates. The combination of the
95% upper and lower confidence limits results in an overall 90% confidence interval
between 7.9 and 12.5 years of life. These confidence levels are consistent with the
estimated mean lifetime of 9.4 years using the model parameter values. The weighted
average of 9.8 years is based on the bootstrap simulations of the experimental data and
should be reasonably close to the estimated mean lifetime.

log(0.3) —( A, +ﬂ%3J

P

fyo = €XP =94 yrs (22)
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Figure 3. Histogram of simulated life capability using 1000 bootstrap trials for the
linearizable model
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Figure 4. Estimate mean cell life capability with statistical confidence levels for the
linearizable model
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3.3 Nonlinear Model

For the nonlinear model form in Equation (5), robust nonlinear regression (Section 2.5,
Appendix B) was used to estimate the model parameters ( 5,, 5,,and p ) using relative

resistance as the performance parameter. The fitted degradation model is given in
Equation (23), where the resulting parameter estimates and associated standard errors are
in Equation (24). As with the linear model fit, these parameter estimates were based on
the acquired experimental data at the elevated test temperatures (i.e., 40°C, 47.5°C, and
55°C) and all three of the SOC conditions. Figure 5 shows the experimental test data and
corresponding nonlinear model fit. The model prediction at the reference temperature of
30°C is also included and, as shown, appears to be a good fit for the experimental data.

1.3
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Figure 5. Fitted nonlinear model versus experimental data
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y(T;t):[l+exp{,5’0 +%}-rj (23)

B, =41.17 (2.4)
B, =-1.229x10* (757) (24)
p=0.0821 (0.0041)

The error assessment for the nonlinear model follows the same approach as the
linearizable case, where Equation (8) is used to fit the experimental data at the elevated
test temperatures using robust linear regression. Figure 6 shows the resulting error model
fit and the estimated parameters are shown in Equation (25). As with the linearizable
case, the cell-specific proportional effect has a standard deviation of about 0.06 while the
measurement error has a relative standard deviation of about 0.01. However, there was
no evidence of lack-of-fit for the nonlinear model, with an SS;or value of 0.509, as
determined from Equation (17). This value was exceeded by more than the 90% of the

SS, - values obtained via the simulation trials.

67 =2.9x10"
a’ =1.3x10"

(25)

The closer fit is not surprising given the additional flexibility of the nonlinear model.
However, one of the negative tradeoffs associated with the nonlinear approach is the
additional computational expense required (mainly associated with the simulations),
especially in the cases where the initial guesses for the parameter values are not
reasonably close to the final estimate. Additionally, interpretation of the nonlinear model
can be somewhat more difficult and should typically require a physical basis for its
development.
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Figure 6. Fitted error model for nonlinear case

The calculated mean cell lifetime (Section 2.6), assuming an EOL criterion of 30%
increase in relative resistance at 7, = 30°C (i.e., 303 K), is shown in Equation (26).
Given the model parameter values in Equation (24), the estimated cell life capability is

~

too, = 12.9 years. Figure 7 shows the histogram resulting from the 1000 bootstrap

simulations based on the nonlinear degradation model and Figure 8 provides a graphical
representation of the corresponding statistical confidence window. The 95% lower
confidence level is 10.1 years since 950 of the 1000 simulation results exceeded that life
estimate. The 95% upper confidence level is 17.0 years since the predicted mean life for
50 of the 1000 simulations results showed higher estimates. These confidence levels are
consistent with the estimated mean lifetime of 12.9 years based on the model parameter
estimates. The weighted average using the 1000 bootstrap simulations is 13.1 years.

1.3% -1
oL = — =12.9 yrs (26)
exp(ﬂo + 5 j

303
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Figure 8. Estimate mean cell life capability with statistical confidence levels for the nonlinear
model
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4. RATE-BASED DEGRADATION MODELING
4.1 Methodology

The change in cell performance over time is typically expressed in terms of a cumulative
degradation model that is formulated in terms of exposure to a constant stress (see
Sections 2 and 3) and the models are generally used to predict degradation in well-
controlled conditions. However, another critical component of successful battery life
estimation is a model that can account for cell aging under non-steady state conditions.
In automotive (and other) applications, for example, cells are usually deployed in non-
isothermal environments. Thus, in these cases it may be more useful to consider a
different modeling framework based on the instantaneous degradation rate of a cell rather
than cumulative level of degradation. Due to their form, such models naturally facilitate
the prediction of the cumulative degradation in non-isothermal conditions (Reference 7).

Rate-based models can come in various forms and have an empirical, semi-empirical, or
physical basis (an example model with a physical basis is provided below). If the
degradation behavior is memoryless (i.e., path independent), then the instantaneous
degradation rate at a point in time will depend only on the present level of the
degradation state and the present stress that is applied to the cell. If the degradation has a
memory effect (i.e., path dependent), then the details of the stressing history must also be
considered in the model. Path dependent experimental test data require a physical basis
in the rate-based model to properly account for the mechanistic changes that have
occurred in the cell chemistry. Memory effects could come from various conditions such
as periodic off-normal testing (e.g., at low temperatures) or by the onset of cell failure
mechanisms (e.g., an internal soft short).

A generalized rate-based empirical model form for of a path independent, or memoryless,
degradation is shown in Equation (27), where y is the performance measure (i.e., relative
resistance in the example case) and temperature, 7, is the sole stress factor. The
cumulative degradation over the temperature profile 7' [O,t] is represented by Equation

(28). The model parameters, «,,a,,...,a,, must be estimated from cell experimental

P 2
data that are accumulated from the RPTs as a function of aging.

g (wr (1) @7
,u(T[O,t]):jg(,u(r),T(r);al,az,...,ap)dr (28)

To illustrate, let Y;; be the j™ measurement of the i cell (for i = 1:N and j = 1:n)), t;; be the
time at which Y; was acquired, and T [0, #;] be the temperature profile experienced by
the i™ cell through ti. The collection of data can then be compactly expressed by

Equation (29). Given estimates for the model parameters (&, @,,...,a, ), the predicted

th

value of each observation (e.g., i~ cell through #;) can be obtained by numerically
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integrating the derivative function in Equation (30) over the temperature path as
expressed in Equation (31). The process for the numerical integration of the derivative
function is provided in Table 4.1. Model parameter estimates will likely involve
nonlinear regression and will need to compute ﬂj (for all i and j) repeatedly to find the

values of E“:l-" cc:,'",.ccw) that minimizes some objective function that is expressed in

terms of the differences between 2.1. andY.

{Yll;tll’T[O’tll]}’{YIZ;tIZ’T[O’tIZ]}V"’{Ylnl;tlnl’T|:O’tln1 ]}

{Ym;tzl’T[O’tzl]}’{Yzz;tzz’T[O’tzz]}:---a{anz;tznz’T[O’tznz :|}
{Kl;tilaT[Oatil]}9{K2;ti25T[O’tiz]}a“'a{ym,.;tml.’T[Oatm,. :|}

oty 710,03, 1Y tyan T[0. 24, ] o .,{YN,,N s T[O,thN J}

Table 4.1. Integrating the derivative function numerically

s=1, T(5) 7(6) d’;(f)
0 7(0) Y(0) 2(7(0),7(0))
1 () 7 (0)+ dY;J(tO)-At g(Y(1).7(1))
2 ) Y(1)+ digl)-m g(¥(2).7(2))
m = At 7(m) IA’(m—l)+ d?(m_l)-At g()}(m),T(m))
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4.2 Application: Non-Isothermal Aging

The purpose of the cell testing activities described in this section was to assess the
memory effects (if any) of lithium-ion cells that are aged at varying temperatures. Rate-
based modeling tools were used to develop a degradation model and predict life
capability with the bootstrap approach (Reference 14). Cell testing was performed at
both the Idaho and Argonne National Laboratories (INL and ANL, respectively). This
study represents one of the path dependence studies recommended by the Technology
Life Verification Test (TLVT) Manual (Reference 5). Other path dependence studies can
include intermixing calendar and cycle-life aging protocols or varying SOC conditions.
Additionally, interaction between these various path dependence studies could be
investigated as well.

4.2.1 Experimental

Cell testing was conducted with commercially available, high-power Sanyo SA lithium-
ion cells, which consist of a Li(Mn, Co, Ni)O, + Li-Mn-O spinel cathode and a graphite
anode (Reference 17). They are 18650-size (i.e., 18 mm diameter and 65 mm length),
with a rated capacity of 1.2 Ah and a voltage range of 4.2 to 2.7 V. Cell aging at INL
was conducted with a Maccor series 4000 battery tester having a maximum voltage and
current rating of 10 V and 12.5 A, respectively. The cells were placed in Tenney Junior
temperature chambers that maintained ambient conditions to within +3°C of the target
during testing. Cell aging at ANL was conducted with an Arbin tester having a
maximum voltage and current rating of 10 V and 25 A, respectively. The cells at ANL
were also placed in Tenney Junior temperature chambers.

The test matrix is shown in Table 4.2 and consisted of 24 cells with three cells per test
condition. Both INL and ANL had control groups (i.e. isothermal conditions) at 45 and
55°C to establish the baseline performance at each temperature. The first non-isothermal
group (“Switch”) consisted of calendar-life aging at 55°C until the power fade reached at
least 15% and then switching to 45°C for the remaining calendar aging (ANL performed
the same test, but with the temperatures reversed). The other non-isothermal group
(“Pulse”) consisted of switching between 55 and 45°C during calendar life aging after
each RPT. All cells were subjected to calendar-life aging at 60% SOC (3.89 V) with
reference performance tests every 32 days.

The Sanyo SA cells were first characterized with three C,/1 static capacity tests (i.e., a
constant current discharge at the rated value of 1.2 A to the minimum voltage from a
fully charged state). This was followed by a constant power discharge at a scaled, 10-kW
level; given a sizing factor of 1400 for these cells (Reference 17), the applied constant
power level was 7.14 W. Next, a low-current hybrid pulse power characterization test
(L-HPPC) was performed using the procedures defined in the PHEV Manual (Reference
1). The final characterization tests included a C;/25 static capacity test (i.e., a full
discharge and charge at 1/25™ of the rated current, 1.2 A / 25 = 48 mA) and an AC
impedance sweep at 60% SOC over a frequency range of 100 kHz to 10 mHz with ten
points per decade of frequency.
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Table 4.2. Sanyo SA cell test matrix for memory study

Lab Group # Type Label Cells T(?g? )
1 ISO-LO Control 3 45
INL 2 ISO-HI Control 3 55
3 NON-ISO Switch 3 55> 45
4 NON-ISO Pulse 3 55/45
5 ISO-LO Control 3 45
6 ISO-HI Control 3 55
ANL .
7 NON-ISO Switch 3 45 > 55
8 NON-ISO Pulse 3 45/ 55

Calendar-life testing consisted of resting the cells at an open circuit voltage condition at
the designated test temperature provided in Table 4.2. A pulse-per-day was also
performed on the cells using the profile shown in Figure 9 (Reference 1). This profile
consists of the standard L-HPPC pulse profile (with a slightly longer rest step) followed
by a 300-s voltage clamp pulse where the cells brought back to the designated voltage
corresponding to 60% SOC. The cells were soaked at the target test temperature for at
least 4 hours prior to the start of each calendar-life test to ensure thermal equilibrium.
Reference performance tests were conducted at 30°C every 32 days during aging. The

RPTs consisted of a scaled, 10-kW constant power discharge, L-HPPC, and an AC impedance
sweep at 60% SOC over a frequency range of 100 kHz to 10 mHz.
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Figure 9. Calendar-life pulse-per-day profile (Reference 1)
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4.2.2 Results

This section provides preliminary rate-based modeling approaches for relative resistance
using a selected subset of the experimental data (i.e., the INL cell groups) and illustrates
the overall methodology for life estimation. A simple rate-based model form is shown in
Equation (32). Using numerical integration and nonlinear regression, the model
parameter fits to the experimental data are provided in Equation (33). Figure 10 shows
the test data and corresponding model fits. Overall, the rate-based model matches the
data reasonably well. The Sanyo SA cells have completed six RPTs and the “Switch”
group that was initially aged at 55°C surpassed 15% power fade after the third RPT.

c;_i‘ _ exp{ﬂo ' %} (32)
;io =31.68 (1.2) 53

B, =-10383 (380)

1.6 1
+ 45C |

1.5 55 frrm
© B5=>45 §

14 | * Pulse55/45 oy

Relative Resistance
- -
) w

=
=

0 0.2 0.4 0.6
Time (years)

Figure 10. Simple rate-based model fit to the INL experimental data

Estimates of the error model parameters from Equation (8) above are provided in
Equation (34). From these estimates, both the cell-specific proportional effect and
measurement error have relative standard deviations of about 0.01. Although this seems
to indicate a reasonable fit, a moderate level of lack-of-fit was indicated using the
statistical analysis presented in Section 2.8. The value of SS,,. from Equation (17)
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using the experimental data was 2.6, which exceeded the 98" percentile of SS,,. values

obtained from the simulation trials. The lack of fit can be observed in Figure 10, where the
model tends to under-predict the observed resistance gain beyond 0.4 years at 55°C.

52 =8.9x10°°
@* =6.5x10°°

(34)

A more generalized form of the rate-based model (Reference 7) is shown in Equation
(35), where k(T) is defined in Equation (36). The physical basis for this model is
analogous to the high-temperature oxidation of metals, such as niobium and cerium
(References 15 and 16), where there were significant changes in the diffusion rate at
which the materials react at different times due to structural changes in the oxide scale.
Using this mechanism in lithium-ion cells, the products that form in the solid electrolyte
interphase (SEI) layer may structurally change with time as the reaction proceeds. The
resulting fitted model parameter values based on numerical integration and nonlinear
regression are provided in Equation (37) and Figure 11 shows that the 55° C data now
more accurately matches the model compared to the simpler model in Figure 10. A
negative value for o indicates that the rate of degradation increases with age. Estimates

of the error model parameters are provided in Equation (38), where both the cell-specific
proportional effect and measurement error have relative standard deviations of about
0.01. However, there is still some evidence for lack-of-fit since the calculated value for
SS1or was 2.15, which exceeded the 96" percentile of SS, . values obtained from the

simulation trials.

W (r) (35)
ool ] (

B, =29.83 (1.2)

B, =-9980 (360) (37)
0 =-0.421 (0.125)

k(T (36)

p+1)

67 =9.4x107
a’=1.3x10"

(38)

The 2010 hourly ambient temperature profile from Phoenix, AZ is used to illustrate life
estimations under non-isothermal conditions based on the rate-based approach (Reference
7). Figure 12 shows the year-long temperature profile. From the generalized form of the
fitted model in Equation (35) and parameter estimates in Equation (37), the predicted
increase in relative resistance assuming repeated instances of this temperature profile
(beginning on January 1) is provided in Figure 13. The resulting mean cell life (i.e.,

26



when the relative resistance first exceeds 1.3), is estimated to be about 4.5 years. Figure
14 shows the empirical cumulative distribution function of end-of-life values obtained

from the bootstrap simulation.

These data indicate that the 95% upper and lower

confidence bound for the mean lifetime of the cells is 4.75 and 3.7 years, respectively.
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Figure 12. Hourly temperature profile: Phoenix, AZ, Calendar year 2010
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Figure 13. Predicted rise in relative resistance
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Figure 14. Cumulative distribution function of predicted mean life from bootstrap
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5. BATTERY LIFE ESTIMATION SOFTWARE

The purpose of the BLE software package (http://www.anl.gov/techtransfer/
Software_Shop/TLVT/TLVT.html) is to facilitate the analysis of simulated and
experimental test data. The software captures all of the mathematical analysis and life-
simulation tools described in this manual as well as the default degradation and error
models described in Section 2. This section provides a description of the software
contents and a user’s guide to running the application.

5.1 System Requirements

The minimum system requirements for the BLE software package are a PC computer
with a Pentium 4 processor with at least 1 GB of memory and VGA graphics. There
should also be a minimum of 3 MB of free space on the hard disk.

The software has been extensively tested on Windows XP and on Windows 7. The
Microsoft .NET framework version 4 Client Profile must be installed for the software to
operate. The minimum system requirement for the .NET 4 is Windows XP SP3. It will
operate with the other .NET 4.0 profiles. To download and install the .NET Framework
4.0, go to the following website and click on "DOWNLOAD." The program will also
function if you install the full NET Framework 4 instead.

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=17113

5.2 Battery Life User Interface

The BLE software application is designed to be very user-friendly. All functions are
accessible through menus and data-entry forms. When the application starts, the blank
desktop, shown in Figure 15 will appear. The main menu consists of five choices: File,
Edit, Run, View and Help. A detailed description of these menu choices are provided in
Section 5.5.

@) Battery Life Estimation and Data Analysis v.3. 1 NN
File Edit Run View Help

Figure 15. A screen view of the “Battery Life Estimation” desktop
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5.3 Equation Requirements

The data to be fit or modeled must at least be time-based (i.e., time is an independent
variable); other variables, such as temperature and energy could also be included. A
maximum of 100 variables can be used in the model equation.

The model equation can be linearizable, as described in Section 2.2. For this approach,
the degradation model must be re-expressed with linear transformations, where each
transform consists of only one independent variable. Consequently, the number of
transform equations for the linearized form is based on the number of independent
variables in the model equation. For example, the expression R = 4 + B/T + Ct* with 4,
B, and C as the fitting coefficients has the linear transform equations of R, 1/7, and ¢*.

A more complex expression such as R=Aexp(B/T){* can be linearized to InR=In4 + B/T +
zIn(z), but it is not in the proper form because of the In4 term (log of a constant). The
original expression should be rewritten as R=exp(4' + B/T)¢’, then linearized with InR=A4"'
+ B/T + zInt with transform equations of InR, 1/7, and Inz.

The model equation can also be nonlinear, as described in Section 2.3. Nonlinearizable
model equations, such as R ={l1+exp(4' + B/T)t}*, do not require transformations, but
initial guesses for the model parameters must be provided to the software for the
regression analysis. These equations can be as complex as needed, but overly-complex
equations will not work (see below).

5.4 Data Formatting Requirements

It is assumed that the data to be fitted are arranged in columns (e.g., in EXCEL or plain
text) with a comma as the delimiter in plain-text files. A header row at the top of each
column must be included as well. The columns do not have to be sequential. It is further
assumed that all data to be fit or modeled are time-based and that time is included as one
of the columns in the discrete variable input file.

The data to be fit should be normalized to the ¢ = 0 value for each dependent variable of
the degradation model (Sections 2.2 and 2.3). However, the beginning of life value (i.e.,
at ¢ = 0) should not be included in the BLE software data file. If it is not removed, the
program will filter these values out as well as any dependent variable values that are less
than zero.

Table 5.1 shows part of a sample input file arranged in columns with time, temperature,
and relative resistance. Note that if there are missing measurements, as shown in the
second row of data, they must be removed before starting the analysis and simulation
program. If they are not removed, an error message will be displayed, stating that there
are no data available.
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Table 5.1. Example of data containing a missing measurement

Time, Temperature, Relative

yr K Resistance
0.1 298 1.02
0.1 298

0.1 298 1.01
0.1 308 1.03

5.5 Software Navigation

This software navigation section details all of the functions of the BLE software tool. In
the accompanying description, the "P»" symbols indicates a sequence of mouse clicks.

5.5.1 File Menu

The File menu is shown in Figure 16 and consists of the following choices: New, Open,
Save, Save As, Preview Report, Print Report, Exit and Recent files.

B ey e

|15e Edit Run View Help
fﬁ Fit

= Open Ctrl+0 |53 Simulation
] save Ctrl+S

H saveas..

Preview report

&5 Printreport Ctri+P

% Ext Ctrl+Shift+X

Recent files

Figure 16. File menu

File » New P Fit. This option activates the Fit Wizard (Section 5.6.3) and allows the
user to start a new fit based on a modeling equation and an existing set of data (i.e., from
a file).

File » New P Simulation. This option activates the Simulation Wizard (Section 5.6.4)
and allows the user to start a new Monte Carlo simulation based on a modeling equation.
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File » Open (Ctrl+0). This option opens an existing *.Life file. The files contain the
information needed to carry out the fit or simulation or a combination of the two. If the
application finds that there is an error in the file, such as it was created by an earlier
version of the software or is corrupt, the application will display an error. (Section 5.6.1)

File » Save (Ctrl+S). This option saves the existing fit / simulation information for
later use. The file is saved to the current filename or to a file called "default.Life."

File » Save As. This option saves the current fit / simulation information for later use.
The file is saved to a user-defined filename.

File » Preview Report. This option lets the user see the report on the desktop before
committing it to paper (Section 5.7).

File » Print Report (Ctrl+P). This option lets the user commit the fit / simulation
calculations to paper.

File » Exit (Ctrl+Shift+X). This option ends the current session.

File » Recent files. This option displays the five most-recent files used or created. The
menu item will not be shown until file(s) have been saved or read. Clicking on a file
name in the list will open the file for use.

5.5.2 Edit Menu

The Edit Menu is shown in Figure 17 and consists of the following choices: Equations,
Life confidence limit, and Copy view to clipboard.

g Battery Life Estimation and Data Analysss _1;.3.}-
File Run View Help

¥, Equations Ctrl+E

% Life confidence limit Ctri+L

(@ Copy view to cipboard

Figure 17. Edit menu

Edit » Equations (Ctrl+E). This option starts the equation editor to alter the stored
equations that are used in the current fit and/or simulation (Section 5.6.3.3).

Edit » Life confidence limit (Ctrl+L). This option changes the lower and/or upper
confidence limits that are used for the life projections (Section 5.6.2.4).
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Edit » Copy view to clipboard (Ctrl+C). This option copies the contents of the
current (foremost) view to the Windows clipboard for pasting into other clipboard-aware
applications, such as EXCEL or Word. It is copied as a windows metafile if the view
contains a plot, or as HTML if the view contains text and/or data tables. Data table
displays are copied exactly as they appear on the screen.

5.5.3 Run Menu

The Run Menu is shown in Figure 18 and consists of the following choices: Fit and
Simulation.

= Simulation  Ctrl+Shift+S * Perform Simulation

Another Life Estimate

Figure 18. Run menu

Run P Fit (Ctrl+F). This option re-runs the present fit.
Run » Simulation (Ctrl+Shift+S). This option displays the sub-menu.

Run » Simulation » Perform Simulation. This option re-runs the current simulation.

Run » Simulation » Another Life Estimate. This option allows another life estimate
to be calculated from the current simulation results.

5.5.4 View Menu

The View menu is shown in Figure 19 and consists of the following choices: Results of
Models, Plot..., and Data....

m) Battery Life Est

~File Edit Run W | Help

Results of Models 3¢ Fitting CerlShiftG
Plot... g Monte Carlo simulation Ctrl=S

Data...

Figure 19. View menu and model results sub-menu
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5.5.4.1 Results of Models

The sub-menu for model results is also shown in Figure 19 and consists of the following
choices: Fitting, and Monte Carlo simulation.

View P Results of Models » Fitting (Ctrl+Shift+G). This option displays the results
of the fitting calculations, and includes the model equation, the names and variables used,

the values of the fitting parameters, the estimate of errors, and lack of fit information
(Section 5.7.1).

View P> Results of Models » Monte Carlo simulation (Ctrl+S). This option displays
the results of the Monte Carlo simulation (Section 5.7.2).

5.5.4.2 Plot

The plot sub-menu is shown in Figure 20 and has five choices: Fitting Results, Var(Y)
vs. (f1-1% (Y -f1)vs. i, 1 vs. Y, and Monte Carlo simulation (Section 5.7.2.2).

jmp Battery Life Estimation and Data Analysis v3.1 [N

File Edit Run E\ﬁm] Help

Results of Models b I
Plot... » ||— Fitting Results Ctrl+N
Data... y |2 VarMvs. (G-17? Ctri+V
(F-i)vs.
L- f vs.¥
il Monte Carlo simulation Ctrl+Shift+T

Figure 20. View menu and plot sub-menu

View » Plot... » Fitting Results (Ctrl+Shift+N). This option produces a plot of the
experimental data and the fit.

View P Plot... » Var(Y) vs. (Z-1)? (Ctrl+Shift+V). This option produces a plot of the
error model results.

View » Plot... » (Y - /1) vs. 1. This option produces a plot of the difference between
the average, relative value and the fitted value.

View P Plot... » /[ vs. Y. This option produces a plot of the fitted value versus the
average, relative value.

View P Plot... » Monte Carlo simulation (Ctrl+Shift+T). This option produces a
cell-distribution bar chart.
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5.5.4.3 Data

The data sub-menu is shown in Figure 21 and has two choices: Input data and model.
The model sub-menu is also shown in Figure 21 and has three choices: Dependent
variable, Var(Y), and Monte Carlo simulation. The label of the dependent variable menu
item will reflect the fitted response (i.e., the dependent variable, such as resistance,
capacity, etc.).

& Battery Life Extimation and Data Analysi v 1

File Edit Run [\ﬁew | Help

Results of Models »
Plot... ' i
Data... » Input data i
Model... » | ¥ Dependent variable
o7 Var(Y)

f3 Monte Carlo simulation

Figure 21. View menu and data sub-menus

View P Data P Input Data. This option displays the input data, and is useful for
comparing the known input data to what the software read from the input file. Figure 22
shows a sample data display with the proper format discussed in Section 5.4. The data
can also be sorted in ascending or descending order by simply clicking on the column
title. When the data are sorted by a particular column, a small arrow (Aor V) will
appear that indicates the direction of the sort. The data displayed in the grid can be
exported to a comma-separated values (CSV) file by clicking on the "Export>>" button
on the right hand side, as shown in Figure 22.

View » Data » Model... » Rel. Resistance. This option displays the degradation
parameter data; in this case, it is the relative resistance. The label will automatically
adjust to the appropriate parameter being fit or modeled by the software.

View » Data » Model... » Var(Y). This option displays the variance of the output
data.

View P Data » Model... » Monte Carlo simulation. This option displays the results
from the Monte Carlo simulation, including the parameter fits, error variances (i.e.,
SIGMA D is the variance of cell-to-cell effects and SIGMA E is the variance of the
measurement error), life projections, and the lack-of-fit sum of squares values generated
for each simulation trial. A sample Monte Carlo simulation output is shown in Figure
23. The data displayed in the grid can be exported to a CSV file by clicking on the
"Export>>" button on the right hand side.
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REL RESIST | TIME | TEMPERATU
» 1.057420408 00863 N3
1.058347338 0.0863 33
1.046881792 0.0863 3
1.008 00863 313
1.035573235 0.0863 313
107381716 0.0863 313 Export >>
1039183135 00863 N3
E 1.036420085 0.0863 N3
1.040746604 0.0863 N3
1.082777056 0.0863 205
1.076852926 0.0863 3205
1.065108428 0.0863 3205
1.080862412 00853 3205
1.048242894 0.0863 205
1.060848111 00863 205
1.068391531  0.0863 3205
1.084589091 0.0863 205
Figure 22. Input data display
@‘Data from Monte Carlo simulation il
Simulation conditions
Experimental Conditions
Number of trials: 1000
TEMP: 302K
B0 | B1 P |SIGMAD | SIGMAE | LifeEstm ¢ | Sum of Squar Export >>
> 1992123755 -6810530434 0587035265 0.003069836 8652218988 1000151932 19.92579054
1862938338 -6396.540157 0554684631 0015196398 5571972346 1000231802 4595442802
16.73428257 -5785.197604 0501342095 0.004080574 0.000124126 1000844538 14.99538184
16.87605665 -5830.995621 0505338543 0004717437 0000105476 1001178320 24.41456504
18.45989887 -6328.891918 0531072381 0.006414969 5955341868 10.01358926 11.26251571
17.76455273 6115750338 0527540235 0006976027 7.052270371 1001446545 ©.431769647
18.64430746 -6388.948216 0536941651 0.000633827 9965571242 10.01870930 9.756236449
17.63522057 -6071.024606 0519511302 0003371581 0000121337 1001873910 9142245143
17.85764909 -6139.474391 0520909272 0.001784956 0.000124508 10.02367436 11.43375316
1817688790 -6245.734670 0540245927 0.000946747 9.847407193 10.02528369 15.68781052
17.45294658 -6026.469846 0.534557367 (.007353886 5.781206593 10.02915203 25.07672085
1953264124 -6674.069354 05592619171 0 0.000113880 10.03706753 16.03902611
18.11398182 -6222.044707 0527603069 0.000172202 0.000153713 10.03789007 11.720086032
18.34554773 -6296.091155 0533027900 0003821436 7.448992468 1004354655 1019191037
17.67988422 -6086.578643 0521682136 0003335914 9741802571 10.05080640 17.20986335
17.69702495 -6090.344583 0519540452 0006284833 0.000135192 10.05526483 5.226843820
17.94003094 -6172.238483 0531246983 0.001068943 9.680855186 10.06001532 1812585242

Figure 23. Monte Carlo simulation data display

5.5.5 Help Menu

The main help screen is shown in Figure 24 and provides a detailed description of the
program’s capability and navigation.
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Battery Life Data Analysis Software

Curve Fitting and Life Projection

L::-l=—

Figure 24. Software help file

5.6 Using the Software
5.6.1 Creating or Opening an Existing Fit/Simulation File

Creating a new fit or simulation (File » New P ) will immediately launch the
appropriate fit wizard (Section 5.6.3) or simulation wizard (Section 5.6.4). When
opening an existing file (File » Open), the user will be prompted with a file-selection
dialog box, similar to that shown below in Figure 25. The BLE software files are saved
with a “*.Life” extension and contains information regarding what type of operation is to
be done (fit, simulation or both) and the values of other parameters used in the program.
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Open an existing fit/simulation _ﬂjﬁ
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4

My Documents
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My Computer
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My Network
Places
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Files of type: |Battery Life files |

Figure 25. File selection dialog box
5.6.2 Fitting and Simulation

Once a file has been opened or created, there are three options available in this software
package for fitting and/or simulating the data:

1. Fit Only. This option solves for parameter values based on input data and the
model equation.

2. Fit and Simulate. This option solves for parameter values and simulates life
based on those fitted values.

3. Simulate Only. This option simulates life based on user-provided parameter
values with the assumption that the fit was completed independent of this
software package.

5.6.2.1 Fit Only

The program will prompt the user to identify the stress factor groups within the dataset to
include in the fitting process. A sample dialog box is shown in Figure 26, with
temperature (in Kelvin) identified as the stress factor of interest. The user may
select/unselect the datasets indicated by the experimental stress condition(s) by clicking
on the check boxes or on the Select All or Unselect All buttons. Click OK to proceed to
the fitting process. The results of the fit can then be seen by clicking on the View menu
choices (Section 5.5.4).
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ﬁilnclude or exclude data set(s) _ _*-:_ =10| x|

Datasets representing combinations of stress factors can be
included or excluded in the fitting calculations. Click to
selectlunselect.

—Stress conditions: TEMPERATURE —————
[~ 303

v 313
v 3205
v 328

Unselect Al ammm[ oK Cancel

Figure 26. Include/exclude dataset(s) dialog box
5.6.2.2 Fit and Simulation

The program first proceeds through the Fit Only function described in Section 5.6.2.1
above, and then prompts the user to run the simulation. The dialog then becomes similar
to that found in the Fit Wizard discussion (Section 5.6.3), followed by the Simulation
Wizard (Section 5.6.4). The results of the fit and simulation can be seen by clicking on
the View menu choices (Section 5.5.4).

5.6.2.3 Simulation only

The dialog is very similar to the Fit and Simulation description in Section 5.6.2.2 above,
except that no fitting is performed and must be provided by the user. The results of the
simulation can then be seen by clicking on the View menu choices (Section 5.5.4).

5.6.2.4 Life Confidence Limits

There are two types of life projections that can be performed with this program, one
based on experimental data (Section 5.6.2.2) and the other based on hypothetical data
simulated from the life equations (Section 5.6.2.3). The difference between the two types
of projections is in how they use confidence limits. The projection based on
experimental data uses an upper confidence limit (UCL) and a lower confidence limit
(LCL); the one based on simulations just uses the lower confidence limit. A typical
display to change just the lower confidence limit is shown in Figure 27. The life
projection will then be calculated using the input value(s), then displayed on subsequent
dialogue boxes and reports.
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@ Edit confidence level x|

‘Confidence level -

LCL % |gu

oK

Figure 27. Editing the lower confidence limit
5.6.3 Fit Wizard

The Fit Wizard assumes that time is an independent variable for all modeling equations.
The fitting process is as follows:

1. Specify the data to be fit
2. Associate variables to the data parameters

3. Specify the life equation and the corresponding transforms using the identified
variables

4. Import test data from file
5. Identify stress factor combination(s) to include in the fit
6. Perform the fit

With each dialog box in the Fit Wizard, the user can move forward by clicking the
“Next” button. If not all of the entries were appropriately filled, the software will prompt
the user for the missing information. To update or modify a previous entry, press the
“Back” button to return to the previous screen.

5.6.3.1 Defining the Data

The first step in the fitting process is to define the type of data that are used for the fit.
Figure 28 shows the list of available dependent and independent variables in the software
tool. The dependent variables include resistance, capacity, energy, and power, and only
one can be selected per fit. The independent variables include time, temperature, state-
of-charge (SOC), power, energy, capacity, discharge cutoff, and charge cutoff. More
than one independent variable can be chosen per fit, and they can be selected by clicking
on the variable name. For example, a total of three variables (one dependent, and two
independent) have been identified for the fit in Figure 28. If a variable name other than
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those shown in Figure 28 is to be used, click on the "User defined..." button. This option
allows any variable name to be used in the application

~# Data Import Wizard

—Define data in file

It is assumed that all data are time-based.
There may be other independent variables to include. Click to select;
click again to de-select

Dependent variable :
(choose one) Independent varizbles

Resistance | Time
Capacity Temperature

Energy SOC
Power Power
Energy
Capacity

User defined... User defined... |

Cancel | Next >

Figure 28. Typical display to define the data in a file

5.6.3.2 Associate Variables with the Definitions

Once the data have been defined, the next step is to assign variables to the parameters.
Since there are three parameters identified in the example shown in Figure 28, the
software will prompt the user to identify three algebraic variables, as shown in Figure
29. The algebraic variables can be more than one letter and the names are not case-
sensitive (e.g., “t” for time and “T” for temperature will not work). The first variable
name in the list is the dependent variable (e.g., resistance).

All temperatures in the fitting and simulation processes must be in Kelvin. If the data
input already has temperature in Kelvin, put a “k” in the “Temperature: Celsius/ Kelvin”
text box. Otherwise, place a “c” in the text box, and the software will automatically
perform the conversion to Kelvin.

The type of model to be used is also indicated on this diaglog box. If the model is
linearizable, click on the "Linear" radio button; otherwise click on the "Nonlinear" radio
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button. It should be noted that these choices are mutually exclusive. Both cannot be
selected at once.

The software will not associate any physical process with the name and, hence, does not
implicitly know if the dependent variable increases or decreases with time. The
"Increases with time" box to the right of the dependent variable text box should be
checked if the dependent variable does increase with time (e.g., it is checked in the case
of resistance) or unchecked if the dependent variable decreases with time (e.g., capacity
or power loss).

At this stage in the software development, only calendar-life data in units of time (e.g.,
weeks, months, years, etc.) are considered for fitting. At some future date, cycle life data
should also be implemented in the software tool as well. The time unit is selected using
the drop-down box under "Increases with time."

B e - |l
R e — I
! | Asceociate names with variahles | =
I l Variable Name Variable Type of model ‘ I
I | Heaplanco IR ¥ Increases with time ‘ I
ail | Time T ) —_— 1l
| Time units Years =l
| Temperature Temp
L 11
I“| Temperature: Celsius{Kelvin [K ‘ll

DcFau\tvariables,’umtsl < Back | Next > | Cancel |

Figure 29. Typical display to associate data and variables
5.6.3.3 Specify the Equations

The life and transform equations must be entered next. The form of the equations must
be of the appropriate mathematical operations and functions. The “Help” button will
identify the available algebraic symbols, as shown in Figure 30. Do not include an equal
sign (i.e., “=") at the beginning of the expression.

Assuming a linearizable model, Figure 31 shows the dialog box for specifying the
equation and transforms. The linearized form of the life equation is entered in the upper
text box marked “Modeling equation” and the terms of the equation are to be entered in
the group of text boxes labeled as “Transform equations.” The number of transform
equations will depend on the number of independent variables identified in Section
5.6.3.1. Using the example variables that have been identified (e.g., resistance, time, and
temperature), the equation for default model is R = 1+exp(b0+b2/temp)tb ! (i.e., Equation
(2)). The “Default Model” button in the dialogue box will automatically fill in the text
boxes with the appropriate model and transforms using the variable labels identified in
Section 5.6.3.2. The linearized form is, therefore, In(R-1) = b0 + b2/temp + (b1)Int. The
terms containing the three variables are entered in the boxes; the fitting constants, b0, b1
and b2, are not entered. The order in which the transform equations are entered does not
matter. The equations are not case sensitive and there is no limit to the number of terms
in them. To confine the fit to a predetermined value, (e.g., a fixed power of time such as



a square-root of time dependence), the fitting equation would be
R=1+exp(b0+b1/temp)t" and the transform equations would not change.

The nonlinear form of the life equation is also entered in the upper text box marked
“Modeling equation,” and must contain all of the independent variables identified in the
previous step (Section 5.6.3.2). This model form will not require any transform
equations. As with the linearizable model in Figure 31, the “Default Model” button in
the nonlinear dialogue box will automatically fill in the text box with the model provided
in Equation (5).

W B
! Enter the equations as yvou would algebraically, except omit the !
=8| symbois to the ieft of the equals sign. That is, if you want to use F
7| | y=x+1 as an equation, enter only the x+1 in a box. B
ml.| The program understands the following operations/functions. e
cdl| They can be used in any order and nested together. |'ls
| R F
I = (mumply) £
mli| / (divide) E
d| ~ (raise to) P
M (axponental} 3
—-i <> i{_!g'gu:a! not équa!} :-
__j < (logicai iess than) i:
e flaniral araatar =
kluul?ﬂl Wi S aLEl LSy
! <= (loqgical less than or equal to) !
== (logical greater than or equal to)
It also understands algebraic logic; for example, expressions lke |
1+exp(b0+b1/temp)*t"p can be used.The expressions are not
case-sensitive, so 'T' is the same as 't I
i
— |
i oK 1 il

Figure 30. Available algebraic functions
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| # Datalmport Wizard — Step 3 -- Specify Equations

The default model, R=1+exp(b0 + b2*Y1 + b3*Y2 + ...)*t~b1, where b0..bn are fitting parameters, Y1..Yn are stress
factors and tis time, and, if using temperature, assumes that the performance decline process obeys Arrhenius-like
kinetics and a simple power of time relationship. All other stress factors are assumed to contribute linearly to the
expression to the expression in the exponential. Please note that all data for the parameter R should be expressed in a
relative form, Rn/Ro.

Modeling equation
R= |1+EXP(B0+B2/TEMF)=T"B1

Transform equations
f= |in(R-1)

[in(T)

[1/TEMP

|DcfauItModc\| < Back [ Next > [ Cancel ’ Help I

Figure 31. Typical display to specify equations and variable transforms for a linearizable
model

It should be noted that there is no default model, linearizable or nonlinear, which depends only on
time. In this case, the Default Model button will be grey and inactive. When the model equation
is appropriately specified in the dialog box, click on "Next >" and the application will check
the syntax of the modeling equation and report any errors. If the modeling equation uses
negation after an open parentheses, as in “(-B0”, the application will report the error,
"missing argument near ')." This is how the equation parser works. If the expression is
preceded, instead, by a space, as in “( -B0”, then no syntax errors will be reported. After
the syntax check, a message box will appear to confirm the names of the fitting
variables. In the example shown in Figure 31, these are B0, B1 and B2. Click OK to

proceed to the next step or Cancel to correct.
5.6.3.4 Import Test Data

The next step in the Fit Wizard is to import data from an Excel workbook or comma-
separated value file. The data must be arranged in columns and normalized to time (t)
=0 (see Section 5.4 for data formatting requirements). Additionally, if the relative
change between measurements is greater than 50% (increase or decrease), the error
model strategies will not be applicable and the user will then see a warning to this effect
and have the option of continuing or not. Figure 32 shows a typical display for file
selection. Only one file can be selected at a time.

Once a file has been selected, the wizard will produce a display similar to that shown in
Figure 33. In this example, an EXCEL workbook was selected as the data file, so the
worksheets names are shown on the left side of the display. Clicking on the worksheet
with the data of interest produces a display similar to Figure 34. If an error was made in
the file selection, click “Open another file...” to change source data. A similar display
will be shown if data are read from a comma-separated-values file.
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Data Inmport Wizard -- Step 3 - Select Data File

r «~®cE-

?Jh_t:mq:h neg meas error.ads
LifeProjection. CSY

model.cow

S |RPT7 30C dat.uds
RPT7 dat w SOC.cov

TLVT.dat

[RPT7 dat w SOC s =l Qpen
Fiesofype:  [Excel andDatafies dot. bt "cov o) =] Cancel L

Figure 32. Typical display to select a data file

| # Opening an Excel file: FAth

It is assumed that all data are normalized to t=0 and that the data for t=0 are not present.
Opening an Excel file

Select sheet with data Sheet preview Name : column in grid

Use this 2 >REL. RESISTANCE
Sheetl TIME

Sheet2 TEMPERATURE
UseThis

Openanotherfile...l Cancel | 0K I

Figure 33. Typical display to open an Excel file

ta are normalized to t=0 and that the data for t=0 are not present.
~Opening an Excel file

Select sheet with data Selected worksheet: Use this 2 Name : column in grid

E -
Time, de
28 —
B ] v

3

Open another file... | Cancel [ OK I

Figure 34. Typical display for selecting the sheet and columns from an EXCEL data file
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In Figure 34, the “Use This 2” worksheet is selected. In this case, the program displays
the contents of the first two rows of the selected sheet in the preview window, allowing
for easier column selection. Data are selected by clicking on the first cell of the column.
For the example shown in Figure 34, the relative resistance data are in column C; time,
column A and temperature, column B. They were selected by clicking on those columns
in that order. The arrow (>) shows the active variable name. The columns selected are
shown in the window on the right side of the display. If a mistake is made, continue
choosing columns until display cycles back to where the error is and click on the correct
column. It is assumed that the time data are in calendar years and that the temperatures
are in Celsius or Kelvin. If the temperatures are in Celsius, the program will convert
them to Kelvin (Section 5.6.3.2).

5.6.3.5 Select Stress Factor Combinations

After the data are imported, they will be analyzed and grouped according to the stress
factors previously identified (see Figure 28). There is also an opportunity to include or
exclude a set of stress conditions if the data are not well-behaved. Figure 35 shows the
display for this step using temperature as an example stress condition. Following this
step, the software proceeds to the fit, and the results can be displayed as shown in Section
5.7.

1} Include or exclude data set(s)

Datasets repre,-ﬂ;enting combinations of stress factors can be
included or excluded in the fitting calculations. Click to
select/unselect.

i~ Stress conditions: TEMPERATURE
I 303

v 313
v 320.5
v 328

Unselect All Select All oK

Figure 35. Selecting which stress factors to include in the fit calculation
5.6.4 Simulation Wizard

Simulation is performed to calculate a life projection based on an assumed model, and, if
experimental data are available, to judge the lack of fit between the test data and the
model. As with the Fit Wizard (Section 5.6.3), the Simulation Wizard assumes time is an
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independent variable for all modeling equations. The simulation process is shown below.
The first three steps are the same as the Fit Wizard, and the corresponding descriptions
can be found in Sections 5.6.3.1 through 5.6.3.3. The remaining steps are described in
this section.

1. Define the data to be used

2. Associate variables to the data parameters

3. Specify the life equation and the corresponding transforms
4. Enter simulation parameters

5. Specify simulation conditions

6. Perform the simulation

With each dialog box in the Simulation Wizard, the user can move forward to the next
step by clicking the “Next” button. If not all of the entries were appropriately filled, the
software will prompt the user for the missing information. To update or modify a
previous entry, press the “Back” button to return to the previous screen.

5.6.4.1 Enter Simulation Parameters

The parameters affecting the simulation results are entered using the form shown in
Figure 36. Most of the fields will be automatically filled in by the software program
from the Fit Wizard (Section 5.6.3), though the user must enter a value for the relative
performance at end-of-life for the selected degradation parameter (e.g. a 30% increase in
relative resistance resulting in a value of 1.3). The other fields can also be adjusted as
necessary. If, for example, the measurement error is independently determined (Section
2.4.2), then this value can replace the estimated error calculated from the experimental
data. Adjustments to the other parameter values, however, are not recommended if the
user wants the simulation to replicate the actual experiment as closely as possible. The
values for the initial parameter should be filled in based on expected performance. For
example, if the model generally assumes a square root of time dependence, the value for
“B1” in Figure 36 should be close to 0.5. Additionally, the estimated life of the batteries
will be compared to the goals established by the U.S. Advanced Battery Consortium
(USABC); in this case, the goals are associated with a hybrid-electric vehicle (HEV).
The established vehicle goals for both calendar and cycle life are selected by the Goals
drop-down box.
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— Simulation parameters

The cells are divided into groups. Each group is
exposed to one set of conditions for the
experimental variables. How many groups of cells
are there?

RPT frequency, years 0.076923076

Relative performance at EOL (>1 indicates an
increase)

Cell-to-cell variation (1), % 5.006092113

Measurement error (1c), % 1.150745727

Goals HEV v

—Initial Parameter Values
Model Equation: 1+EXP(B0+B2/TEMP)*T~B1

Parameter Name Value
BO 18.5995812464449

Bl 0.52840156406604€

B2 -6359.7396176464

|
Cancel oK ‘

Figure 36. Display allowing entry of simulation parameters
5.6.4.2 Specify Simulation Conditions

The experimental conditions (temperature, duration, number of cells, etc.) are then
specified for all groups, as indicated in Figure 37. There is no limit to the number of
groups that can be used, but the total number of cells in the simulation is limited to 500.
The Monte Carlo simulation parameters for life prediction are also entered at this stage.
These values include the temperature (in Kelvin), the upper and lower confidence limits,
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and the number of simulation trials. Click on “OK” to perform the simulation and life
prediction.

0| Group #1 : : Group #3

los
UCL, % las
No. of trials l1000

cancel | oK

Figure 37. Experimental conditions and Monte Carlo parameter entry
5.6.5 Model Fit Results

The results from the model fit can be found by clicking on View P Results of Models
» Fitting (Ctrl+Shift+G). An example result is shown in Figure 38 and includes the
model equation, the names and variables that were used, the values of the fitting
parameters, the estimate of errors, and lack-of-fit information. The values given in
parentheses for each of the fitting parameters are the bootstrap standard errors determined
from the Monte Carlo simulations. The values given in the error model section, ng and
052, represent the variances of the measurement error and cell-to-cell effects,
respectively. They are derived from the regression of the variance of the experimental

dependent variable, Y, on ( [ —1)2 , where £ is the predicted value of Y. The values for

Var(Y) and i1 are computed for each experimental condition (e.g., temperature/time) to

form the data set used in this regression. Alternatively, the measurement error will reflect
the independently determined value, as discussed in Section 2.4.2.

The value of the lack-of-fit statistic obtained with the actual data is compared with the
empirical cumulative distribution function (CDF) of the values obtained from the
simulation trials to assess model inaccuracy. If the lack-of-fit statistic obtained with the
actual data exceeds the percentile of the simulated values, then it can be concluded that
the model is inaccurate. Normally, a small value for « is selected (e.g., 0.01). In
practice, the CDF is evaluated at the value of the lack-of-fit statistic (SS,,,) obtained

with the actual data. If the evaluated CDF point exceeds (1-@), then it is concluded that
there is evidence for lack of fit. Pressing the "View CDF" button will display the
empirical CDF curve and the evaluated CDF point as shown in Figure 39. The empirical
CDF curve may take some time to display fully.
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e e g
TC Tietng

~Rel. Resistance model

Model Equation: -
R=1+EXP(B0+B2/TEMP)*T"B1
Linear fitting method used

Transform equations
Eq. 1: LN(R-1)
Eq. 2: LN(T) b

—Error model
G =1.3242E-4

O . =2.5061E-3

Estimate of measurement error, % 1.1507

Estimate of cell-to-cell variability, % 5.0061

—Lack-of-fit Statistic
Lack-of-fit Statistic 1.5158
Empirical CDF Point 0.96
Conclusion Lack of fit detected

View CDF

Figure 38. Example results from fitting display
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0.501

Erpirical COF {proportion)

0.00 " " T r T ,
0.00 0.50 1.00 1.60 2.00 2.50 3.00 350 4.00
Lack-of-fit Statistic

Figure 39. Example CDF curve

5.6.6 Monte Carlo Simulation Results
5.6.6.1 Life Estimation

The results of the Monte Carlo simulation can be found by clicking on View P Results
of Models » Monte Carlo simulation (Ctrl+Shift+S). Figure 40 shows an example of
life estimation when using experimental data (i.e., a life estimate with an upper and lower
confidence limit). If a life estimate is based only on simulation data, the resulting
prediction will typically be displayed as shown in Figure 41.

Life estimate at 95% LCL=8.4 ¥
Life estimate at 95% UCL= 13.1y

Goal
| E—
0 = 10 15 20 25 30
Time, v

Figure 40. Life estimate display using experimental data
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zl

\y The 90% LCL is 9.8 years

OK

Figure 41. Typical life projection result display from Monte Carlo simulation

5.6.6.2 Data Plots

As mentioned in Section 5.5.4.2, there are five data plots available in the View P Plot...
» menu option. Figures 42 through 47 show representative plots for each of the
available options based on a set of experimental test data and a linearizable parameter fit
using the default model in Section 2.2. A sample Fitting Results plot, which includes
both experimental data and the resulting model fit, is shown in Figure 42. The numbers
on the right of the model output indicate the corresponding test temperature (in Kelvin).

1.35

1.30-

1.254

© 00

o]

1.204

Rel. resistance

1.15-

1.101

1.054

1.m ¥ L) L L] L
0.00 0.10 0.20 0.30 0.40 0.50 0.60
Time, years

Figure 42. Experimental data and fitted curves
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An example plot of the error model results (i.e., Var(Y) vs. (-1)?) is shown in Figure
43, where fi is the estimated performance. A plot of (Y - &) vs. jis shown in Figure
44, where Y is the average relative value and £ is the estimated value. A plot of /I vs.

Y is shown in Figure 45. Finally, there are two different viewing options for the Monte
Carlo simulation. Figure 46 shows the sample cell-distribution bar chart and Figure 47
displays the same data as a smooth curve. These plots indicate that over 50% of the cells
have a predicted life of about 10 years or more.

"0

7.00

6.004

5.00+

4.00+

Var(Y; OG)

2.004

0.00 0.05 0.10 0.15
@ROGH-1)

Figure 43. Error model results
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Figure 44. Difference between average and predicted performance vs. predicted performance
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Figure 45. Predicted performance behavior vs. the average measured performance
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Figure 46. Cell distribution bar chart
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Figure 47. Cell distribution bar chart as a smooth curve



5.6.7 Report Preview

A preview of the results assembled by the software can be found by clicking File »
Preview Report (Section 5.5.1). The first page of a sample report is shown in Figure
48. This is useful in viewing the report prior to printing it on paper. The '<Prev' and
'Next>' buttons on the upper left allow navigating between and among a multi-page

report.

Battery Life Data Analysis

Battery Life file:
Data file: C:\BLE Software\RPT7 dat w SOC xls
Data sheet: Use this 2

Model Equation:
R=1+EXP(B0+B2/TEMP)T*B1

Transform equations
Eq. 1: LNR-1)

Eq. 2: LN(T)

Eq 3 1TEMP

Names and Variables:

REL. RESISTANCE: R

TIME: T

TIME UNITS: Years
TEMPERATURE: TEMP

INPUT TEMPERATURE UNITS: K

Groups used in calculation
313

3205

328

Values of parameters (bootstrap standard error):
B0=18.5996 (1.2514)

B1=0.5285 (2.185E-2)

B2= -6359.7396 (400.8317)

Error Model Results:
o5 =25061E3
Estimate of cell variability, %=5.0061

Figure 48.

Report print preview
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5.7 Troubleshooting

The following section identifies known issues with the software development as of the
publication of this manual, and their associated solutions.

5.7.1 Text-entry boxes and/or buttons are not in the correct positions or
appear to be crowded

Solution: Change the settings for the display. Close the application. Right click on the
desktop and select properties. Click on the tab that says Settings. Click on the button
that says Advanced. Change the DPI setting in the Display group box to 96 DPI. Click
OK twice.

5.7.2 The application is running on a network and an error occurs when
trying to open a Life file

Solution: A message box similar to the one shown in Figure 49 should appear. This
error occurs only when the application is running on an intranet. Download the .NET 2.0
SDK  from Microsoft and follow the install instructions given in
http://technet.microsoft.com/en-us/library/bb742442.aspx. Reboot the computer. Click
Start -> Programs -> Administrative Tools -> Microsoft .NET Framework 2.0
Configuration. Click on the 2.0 Configuration snap-in followed by OK. Click on
Configure Code Access Security Policy -> Adjust Zone Security -> Make changes to this
computer -> OK -> Local intranet. Move slider to Full Trust. Click Next -> Finish.
Close the configuration tool window. The application should run normally now.

- Application attempted to perform an operation not allowed by the
1 security policy. To grant this application the required permission,
\) contact your system administrator, or use the Microsoft NET
Framework Configuration tool.

If wou click Comntinue, the application will ignore this error and attempt
to continue.

Request for the permission of type

'System. S ecurity. Permissions. FilelDPermission, mscorlib,
Version=20.00, Culturesneutral,

PublicKeyT cken=b7725c5619342089' faled.

+ Details Continue

Figure 49. Network error box
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Appendix A

Methods for Estimating the Parameters of Linear Models

1. INTRODUCTION

This appendix summarizes the statistical methodology used for estimating the parameters
associated with linear degradation and error models. A linear model that can be
represented by the form shown in Equation (Al) is assumed, where Z is a response
variable, the X;’s represent M explanatory variables, and the £’s are model parameters
which are to be estimated. To achieve this linear form, it may be necessary to transform
the natural response and/or one or more of the natural explanatory variables to a linear
form. For example, the response could be transformed as shown in Equation (A2), where
Y is the underlying performance metric (e.g., relative resistance). Other transformations
could also be applied to explanatory variables, such as the inverse temperature.

Z=B,+B - X, +06,- X, +..+ B, - X, (A1)
Z =log(Y —1) (A2)

For estimating model parameters (£), it is assumed that there are N observations, each
containing the observed value of the response variable, Z, and the associated values of the
explanatory variables, X; (e.g., inverse temperature). Thus, the data consist of a set of
observations, as shown in Equation (A3). The model parameters are then estimated by
using a robust linear regression procedure (Reference 12). The purpose of using a robust
regression procedure rather than ordinary least squares is to reduce the influence of
anomalous data on the parameter estimates.

(2@ x,6),x,@),.... X, (0):i=12,....,N} (A3)
An illustrative example of this methodology is provided in Reference 6.

2. ROBUST LINEAR REGRESSION

Two specific cases for estimation are considered. In the first case, the model contains an
intercept term (/). Here, the initial step is to compute the average and standard
deviation of each of the explanatory variables, X;. This yields {)?l,)_(z,...,)? M}
and {SI,SZ,...,S M}, respectively. These explanatory variables are then mean-centered

and scaled as shown in Equation (A4). Therefore, in the case with an intercept, the
design matrix (D) has a size of “N by M+1”, and is of the form shown in Equation (AS5).

__J J (A4)
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In the second case for estimation, the model does not contain an intercept. Here, the
explanatory variables are not mean-centered and/or scaled, and the design matrix (D) has
a size of “N by M”, and is of the form shown in Equation (A6).

x0 ... x,Q0
D=| i .. (A6)

Once the design matrix has been determined, initialize a weighting matrix () of size “N
by N’ with the identity matrix, and set Z = (Z M,z(2),...,Z (N ))T , wWhere Z is the
response variable of the form shown in Equation (A2). Next, repeat the following matrix
computations three times:

b=(D"-w-D) -D"-W-Y (A7)
R=7Z-D-b (A8)
W = diagonal matrix with elements from BIWEIGHT(R,R, ...,Ry) (A9)

The values for b in Equation (A8) are determined from Equation (A7) and the
corresponding explanatory variables. In the first case (with an intercept), the estimated
model parameters are given by Equations (A10) and (A11). In the second case (without
an intercept), the estimated model parameters are given by Equation (A12).

. X X X

ﬂo:(bo—bl-?l—bz-s—z—...—bM-S—M] (A10)
1 2 M

~ b _

ﬂi:E’ fori=1: M (A11)

B.=b fori=1:M (A12)

The BIWEIGHT function in Equation (A9) produces an N-dimensional output of weights
from an N-dimensional input. It is based on Tukey’s biweight function with ¢ = 6
(Reference 13). Letting BIWEIGHT{RI,RZ,...,Rn} represent the biweight function and

its input arguments, determine the weighting function as follows:
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1.  Compute the median absolute value (MAV) of the R;’s determined from
Equation (A8)

2. Compute standardized values of R;’s as shown by Equation (A13)

3. WEIGHT, =0if Z, >1 fori=1:n

4 WEIGHT, =(1-U?) if Z, <1 fori=1:n

5. Return weights (W) to Equation (A9). The updated diagonal elements of W
are given by the values }WEIGHT,,WEIGHT,,...,WEIGHT, } .

_Z
Ui= %-MAV) (A13)

2.1 lllustration of Linear Model Forms

The default degradation model has the linearized form shown in Equation (A14). This
can be put into the form of Equation (A1) using Equation (A2) and the corresponding
transformations shown in Equations (A15) through (A17), where the X;’s are generic
explanatory variables as defined by Equation (A3).

log(u(T;2)=1)= B, + S %+ p-log(t) (Al4)
X, :% (A15)
X, =log(t) (A16)
B =p (A7)

The default error model has the linearized form given in Equation (A18), with the
corresponding transformations shown in Equations (A19) through (A22).

Var(Y,(T30)) = o2 -(u(T5t) 1) +0? (A18)
Z =Var(Y,(T;t)) (A19)
X, = (u(x:0)-1) (A20)
=2’ =c’ (A21)
B, =0, (A22)
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3. POSSIBLE COMPLICATIONS WHEN ESTIMATING ERROR
MODEL PARAMETERS

Due to statistical fluctuations in the data, use of the estimation procedure might result in
a*<0(.e,B,<0)oré; <0 (ie, B, <0). Such negative estimates of variances can

and should be regarded as nonsensical and the parameter estimates should be modified as
discussed below.

3.1 Case 1l: 4*°<0

In this case, the hypothesized measurement error was not detected. First, it is
recommended that an alternative non-negative estimate fora” be specified (i.e., &*(alt)).

This estimate could be based on an independent assessment of the measurement error
(Section 2.4.2, References 10-11). If the measurement error variance is believed to be

vanishingly small when compared to o}, then it might be prudent to consider @ (alt) =0.

Once the alternative estimate of @’ is available, &; must be re-estimated. This can be
accomplished by first re-parameterizing the error model as shown in Equation (A23).

Z =Var(Y,(X;1))-2-&*(alt) = B, -(u(X50) 1)’ (A23)

For purposes of regression, each observation again consists of Z and X;, where X; is the
same as defined in the first column of Equation (A6) and Z is now the “within-group”

variance of the response minus twice @*(alt). In this case, however, use the robust linear
regression procedure without an intercept. The resulting estimated slope ( ,31) provides

the value for & (alt).

3.2 Case2: 6;<0

In this case, the hypothesized random cell-specific proportional effect is not detectable.
An alternative estimate for o’ can be determined with Equation (A24), where
(Yl,Yz,... Y f) are the n; values of the response (e.g., relative resistance) for the " of N

>Tn

groups defined by stress condition and time. An alternative estimate for &; would be to

set it equal to zero, &2(alt)=0.

S (n, 1) Var(t, ¥,.. 7))

e (A24)

1
2 jzjj,(”, B 1)

&> (alt) =
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Appendix B

Methods for Estimating the Parameters of Nonlinear
Degradation Models
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Methods for Estimating the Parameters of Nonlinear
Degradation Models

1. INTRODUCTION

This appendix summarizes the statistical methodology used for estimating the parameters
associated with nonlinear degradation models. A nonlinear model is generically
represented by Equation (B1), where Z is a response variable, the X;’s represent M
explanatory variables, and the £’s are p model parameters which are to be estimated. For
estimating model parameters (), it is assumed that there are N observations, each
containing the observed value of the response variable, Z, and the associated values of the
explanatory variables, X; (e.g., inverse temperature). Thus, the data consist of a set of
observations, as shown in Equation (B2). The model parameters are then estimated by
using the robust nonlinear regression procedure described below.

Z=fX,. X0 X3 B Brse s B,) (B1)
{(z(@) x, (), x,G)....x, (0):i=12,...,N} (B2)
2. ROBUST NONLINEAR REGRESSION

The model parameters are estimated by using an iterative robust nonlinear regression
procedure based on Tukey’s biweight function (Reference 13). The Levenberg-
Marquardt algorithm (Reference 8) is used with each iteration to estimate the parameter
values. The first iteration consists of ordinary nonlinear least-squares regression where
the relative weights are identical. Subsequent iterations use updated weights that are
computed from the biweight function.

For the first iteration, the Levenberg-Marquardt algorithm requires the user to supply
initial guesses for the model parameters (ﬂl, Boseo s B p) and then searches to find
parameter values that minimize the summation of the squared values of the residuals, as
shown in Equation (B3). Residuals for the nonlinear model are computed the same way

as the linearizable model case and based on the difference between the predicted and
actual response variable; this is defined in Equation (B4). The predicted response

variables, Z, are as shown in Equation (B5). The resulting estimated parameter values
are denoted by (ﬁl,ﬁz,...,,@p).

>(2-2f (B3)
R=%-2 (B4)
Z,= fX, 02,0 X, (1 BrvennsB,) (B3)
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As with the linearizable model, a weighting matrix (W) can be generated using the
biweight function as defined in Appendix A, where W is a diagonal matrix with elements
from BIWEIGHT(R,R,,...,Ry). The Levenberg-Marquardt algorithm is then re-applied
(using the updated set of parameter estimates to begin the search) to find model
parameter values that minimize the weighted summation of the squared values of the
residuals, as shown in Equation (B6). The process of computing residuals, followed by
updating weights and parameter estimates continues for a total of two more iterations to
determine final estimates for the model parameters.

w,-(2,-2z] (B6)

1

M=

I
LN
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